期刊文献+

记忆型抽象发展方程全局吸引子的存在性 被引量:3

Existence of global attractors for abstract evolution equations with fading memory
下载PDF
导出
摘要 在空间V_θ×H×L_μ~2(R^+,V_θ)中,讨论了具有衰退记忆的抽象发展方程当非线性项临界增长且外力项g∈H^(-1)(Ω)时的长时间动力学行为.得到了全局吸引子的存在性结果,推广和改进了已有结果. Through use of some new methods and estimate techniques,the long-time dynamical behavior of the abstract evolution equation with fading memory was discussed in the space Vθ× H×L_μ^2(R^+,Vθ) when nonlinearity was critical and the forcing term g∈H^-1(Ω).The existence of global attractors was obtained.The results have extended and improved some known results.
作者 汪璇 段奋霞
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期523-529,共7页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(11361053) 甘肃省自然科学基金项目(145RJZA112)
关键词 抽象发展方程 全局吸引子 临界指数 衰退记忆 abstract evolution equation global attractor critical exponent fading memory
  • 相关文献

参考文献14

  • 1Borini S, Pata V. Uniform attractors for a strongly damped wave equations with linear memory[J]. Asymptot Anal, 1999, 20(7): 263-277.
  • 2Coleman B D, Noll W. Foundations of linear viscoelastic- ity[J]. Rev Mod Phys, 1961, 33(2): 239-249.
  • 3Dafermos C M. Asymptotic stability in viscoelasticity[J]. Arch Rational Mech Anal, 1970, 37(4): 297-308.
  • 4Fabrizio M, Morro A. Mathematical problem in linear vis- coelasticity[C]//SLAM Studies in Applied Mathematics, Philadelphia: SLAM, 1992.
  • 5Temam R. Infinit dimensional dynamical system in me-.chanics andphysics[M]. NewYork: Springer-Verlag, 1997.
  • 6安玉昆.吊桥方程及其相关问题[D].兰州:兰州大学,2001.
  • 7Giorgi C, Rivera J E M, Pata V. Global attractors for a semi- linear hyperbolic equation in viscoelasticity[J]. Journal of Mathematical Analysis & Applications, 2001, 260(1): 83- 99.
  • 8Pata V, Zucchi A. Attractors for a damped hyperbolic equation with linear memory[J]. Adv Math Sci Appl, 2001, 11(2): 505-529.
  • 9Ma Qiao-zhen, Zhong Cheng-kui. Existence of strong global attractors for hyperbolic equation with linear mem- ory[J]. Applied Mathematics and Computation, 2001, 157(3): 745-758.
  • 10Sun Chun-you, Cao Dao-min. Non-autonomous wave dynamics with memory-asymptotic regularity and uni-form attractor[J]. Discrete and Continuous Dynamical Systems Series B, 2008, 9(3): 743-761.

共引文献1

同被引文献12

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部