摘要
在空间V_θ×H×L_μ~2(R^+,V_θ)中,讨论了具有衰退记忆的抽象发展方程当非线性项临界增长且外力项g∈H^(-1)(Ω)时的长时间动力学行为.得到了全局吸引子的存在性结果,推广和改进了已有结果.
Through use of some new methods and estimate techniques,the long-time dynamical behavior of the abstract evolution equation with fading memory was discussed in the space Vθ× H×L_μ^2(R^+,Vθ) when nonlinearity was critical and the forcing term g∈H^-1(Ω).The existence of global attractors was obtained.The results have extended and improved some known results.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第4期523-529,共7页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(11361053)
甘肃省自然科学基金项目(145RJZA112)
关键词
抽象发展方程
全局吸引子
临界指数
衰退记忆
abstract evolution equation
global attractor
critical exponent
fading memory