期刊文献+

时空分数阶对流扩散方程的两种有限差分格式的比较(英文)

A comparison of two kinds of finite difference schemes for space-time fractional convection-diffusion equations
下载PDF
导出
摘要 提出了求解有限区域上的一维时空分数阶变系数对流扩散方程的两种隐式有限差分格式,就格式的精度和收敛阶比较这两种差分格式的优劣.当使用Caputo分数阶导数对a阶时间导数项进行离散时,在两个不同的点上分别采用中心差分,而对β阶空间导数项均使用转化的Grünwald公式进行离散.对得到的两种格式进行稳定性和收敛性分析.用几个已知精确解的数值例子验证和比较这两种有限差分格式的精确性和有效性. Two implicit finite difference schemes were developed for solving one dimensional space-time fractional convection-diffusion equations with variable coefficients on a finite domain,and our purpose was to compare these two finite difference schemes in terms of the accuracy and convergence order of the scheme.We took advantage of the central difference at two different points respectively,when we discretized the temporal α-order derivative term using Caputo fractional order derivative.The spatial β-order derivative term was discretized by using a shifted Grünwald formula.Analysis of stability and convergence of the methods were done.Numerical examples with known exact solution were used to verify and compare the finite difference schemes.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期545-551,共7页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by the National Natural Science Foundation of China(10971024)
关键词 时空分数阶对流扩散方程 有限差分 转化的Grünwald公式 稳定性 收敛性 time-space fractional convection-diffusion equation finite difference shifted Grünwald formula stability convergence
  • 相关文献

参考文献28

  • 1Oldham K B, Spanier J. The fractional calculus[M]. New York: Academic Press, 1974.
  • 2Meerschaert M, Benson D, Scheffier H E Stochastic solu- tion of space-time fractional diffusion equations[J]. Phys Rev E, 2002, 65(4): 1103-1106.
  • 3Magin R L. Fractional calculus in bioengineering[M]. Danbury: Begell House Publishers, 2006.
  • 4Scalas E, Gorenflo R, Mainardi F. Fractional calculus and continuous-time finance[J]. Physica A, 2000, 284(1/4): 376-384.
  • 5Raberto M, Scalas E, Mainardi F. Waiting-times and returns in high-frequency financial data: an empirical study[J]. Physica A, 2002, 314(1/4): 749-755.
  • 6Benson D A, Wheatcraft S W, Mcerschaert M M. Applica- tion of a fractional advection-dispersion equation[J]. Wa- ter Resour Res, 2000, 36(6): 1403-1412.
  • 7Schumer R, Benson D A, Meerschaert M M, et al. Multi- scaling fractional advection-dispersion equations and their solutions[J]. Water Resources Research, 2003, 39(1): 61- 79.
  • 8Meerschaert M M, Tadjeran C. Finite difference approxi- mations for fractional advection-dispersion flow equa- tions[J]. J Comput Appl Math, 2004, 172(1): 65-77.
  • 9Zhang Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics & Compu- tation, 2009, 215(2): 524-529.
  • 10Gao Guang-hua, Sun Zhi-zhong. A compact finite differ- ence scheme for the fractional sub-diffusion equations[J]. Journal of Computational Physics, 2011, 230(3): 586- 595.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部