期刊文献+

一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性 被引量:1

POSITIVE PERIODIC SOLUTIONS FOR A KIND OF P-LAPLACIAN-RAYLEIGH EQUATION WITH SINGULARITY
下载PDF
导出
摘要 利用重合度理论,研究一类具有奇性的p-Laplacian-Rayleigh方程,获得其周期正解存在性新的充分条件,推广和改进了已有文献中的相关结论。 Based on the continuation theorem of coincidence degree, we study a kind of p-Laplacian-Rayleigh equation with a singularity. Some new sufficient conditions for the existence of positive periodic solutions are obtained. The results have extended and improved the related reports in the literatures.
作者 陈仕洲
出处 《井冈山大学学报(自然科学版)》 2016年第4期6-8,共3页 Journal of Jinggangshan University (Natural Science)
基金 广东省高等教育教学改革项目(GDJG20142396) 韩山师范学院理科团队项目(LT201202)
关键词 p-Laplacian-Rayleigh方程 周期正解 奇性 重合度理论 p-Laplacian-Rayleigh equation positive periodic solution singularity coincidence degree
  • 相关文献

参考文献6

  • 1丁同仁.关于周期性Brillouin电子束聚焦系统的一个边值问题[J].北京大学学报:自然科学版,1965,11(1):31-38.
  • 2叶彦谦,王现在.电子注聚焦理论中所出现的非线性微分方程[J].应用数学学报,1978,1:13-41.
  • 3Zhang M. Periodic solutions of Li6nard equations with singular forces of repulsive type [J]. J. Math. Anal. Appl. ,1996, 203: 254-269.
  • 4高亚静,陶诏灵.一类p-Laplacian-Rayleigh方程周期正解的存在性[J].黑龙江大学自然科学学报,2015,32(5):630-634. 被引量:2
  • 5钟涛,鲁世平.一类具有奇性Rayleigh方程周期正解的存在性[J].扬州大学学报(自然科学版),2015,18(2):18-21. 被引量:3
  • 6Man.ascvich R, Mawhin J. Periodic Solutions for Nonlinear Systems withp-Laplacian-Like Operators[J]. Journal of Differential Equations, 1998, 145(2): 367-393.

二级参考文献21

  • 1GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. Lect Notes Math, Berlin: Springer, 1977: 568.
  • 2CAPIETTO A, MAWHIN J L, ZANOLIN F. Continuation theorems for periodic perturbations of autonomous systems [J]. Trans Amer Math Soc, 1992, 329(1) : 41-72.
  • 3ZHANG Meirong. Periodic solutions of Lienard equations with singular forces of repulsive type [J]. J Math Anal Appl, 1996, 203(1): 254-269.
  • 4WANG Zaihong. Periodic solutions of Lienard equations with a singularity and a deviating argument [J]. Non-linear Anal: Real World Appl, 2014, 16: 227-234.
  • 5WANG Genqiang, CHENG Suisun. A priori bounds for periodic solutions of a delay Rayleigh equation [J]. Appl Math Lett, 1999, 12(3): 41-44.
  • 6LU Shiping, GE Weigao, ZHENG Zuxiou. Periodic solutions for a kind of Rayleigh equation with a deviating argument [J]. Appl Math Lett, 2004, 17(4): 443-449.
  • 7GOSSEZ J P, OMARI P. Periodic solutions of a second order ordinary differential equation: a necessary and suf- ficient condition for nonresonanee [J]. J Differ Eqs, 1991, 94(1): 67-82.
  • 8HABETS P, SANCHEZ L. Periodic solutions for some Lienard equations with singularities [J]. Proc Amer Math Soc, 1990, 109(4): 1035-1044.
  • 9HAKL R, TOREES P J, ZAMORA M. Periodic solutions to singular second order differential equations: the repulsive case [J]. Topol Methods Nonlinear Anal, 2012, 39(2): 199-220.
  • 10CHU Jifeng, LIMing. Positive periodic solutions of Hill's equations with singular nonlinear perturbations [J]. Nonlinear Anal: Theor, 2008, 69(1): 276-286.

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部