期刊文献+

Lax Pairs and Integrability Conditions of Higher-Order Nonlinear Schrdinger Equations

Lax Pairs and Integrability Conditions of Higher-Order Nonlinear Schrdinger Equations
原文传递
导出
摘要 We derive the Lax pairs and integrability conditions of the nonlinear Schrdinger equation with higher-order terms, complex potentials, and time-dependent coefficients. Cubic and quintic nonlinearities together with derivative terms are considered. The Lax pairs and integrability conditions for some of the well-known nonlinear Schrdinger equations, including a new equation which was not considered previously in the literature, are then derived as special cases. We show most clearly with a similarity transformation that the higher-order terms restrict the integrability to linear potential in contrast with quadratic potential for the standard nonlinear Schrdinger equation.
作者 M.Asad-uz-zaman H.Chachou Samet U.Al Khawaja M.Asad-uz-zaman;H.Chachou Samet;U.Al Khawaja(Physics Department,United Arab Emirates University;Laboratory for Theoretical Physics and Material Physics,Faculty of Sciences,Hassiba Benbouali University of Chlef)
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第8期171-178,共8页 理论物理通讯(英文版)
基金 the support provided by United Arab Emirates University under the NRF grant the support provided by King Fahd University of Petroleum and Minerals under group project nos.RG1107-1,RG1107-2,RG1214-1,and RG1214-2
关键词 exact solutions Lax pair integrability 高阶非线性 可积性条件 Lax对 方程 五次非线性 可积条件 时间相关 相似变换
  • 相关文献

参考文献37

  • 1C.M. Soukoulis, (edited by), Photonic Crystals and Light Localization in the 21st Century, Nato Science Series, Series C: Mathematical and Physical Sciences, Springer, Netherlands 563 (2000).
  • 2A. Ankiewicz and N. Akhmediev, Phys. Lett. A 378 (2014) 358.
  • 3L.C. Zhao, S.C. Li, and L.M. Ling, Phys. Rev. E 89 (2014) 023210.
  • 4A. Chowdury, D.J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E 90 (2014) 032922.
  • 5C. Liu, Z.Y. Yang, L.C. Zhao, and W.L. Yang, Phys. Rev. E 91 (2015) 022904.
  • 6Wen-Jun Liua, Long-Gang Huang, Yan-Qing Li, Nan Pan, and Ming Lei, Appl. Math. Lett. 39 (2015) 91.
  • 7W. Liu, L. Huang, P. Huang, Y. Li, and M. Lei, Appl. Math. Lett. 61 (2016) 80.
  • 8W. Liu , L. Pang, H. Yan, and M. Lei, Nonlinear Dyn. 84 (2016) 2205.
  • 9P.D. Lax, Comm. Pure Appl. Math. 21 (1968) 467.
  • 10V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin (1991).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部