期刊文献+

秩亏最小二乘问题的预条件AOR迭代法

Study of 2-block AOR iterative method for rank deficient least squares problems
下载PDF
导出
摘要 秩亏最小二乘问题来源于统计学问题、最优化问题等科学与工程计算领域。由于实际问题所对应的线性方程组的系数矩阵的阶数比较大,且秩亏,换句话说,矩阵A是不可逆的,使其求解变得更为复杂,因此,研究求解秩亏最小二乘问题的高效方法就变得尤为重要。为了求解秩亏最小二乘问题,在预处理基础上提出了二分块的AOR迭代法;研究了新建立的AOR迭代法的收敛性和最优参数的选取,得到了一些相关的定理。数值例子验证了所给方法的可行性。数值实验和理论都表明:新的AOR方法的计算格式更加简单、收敛速度快、并具有广泛的适用性,同时行满秩矩阵A1的选取要比文献[8]中可逆方阵A11的选取更方便。 Rank-deficient least squares problems arise from many scientific and engineering computations such as statistics, optimal problem and so on. In the practical problems, since the order number of corresponding coefficient matrix of linear equations is larger, and the rank of matrix is a deficit. In other words, matrix A is irreversible. Then solving process is become more complex. So it is very important to study of the suitable iterative methods for rank-deficient least squares problems. For solving the least square problems with rank-deficient, the 2-block AOR method by preconditioning technique was given. The convergence analysis of the new AOR method and the choice of optimal relaxation parameters were studied. The corresponding theorems were gotten. Numerical examples showed the effectiveness of new method. It suggests that the new iterative AOR method is simpler, faster in convergence speed, more extensive applicability than the method in [83. Meanwhile, matrix A1 is full row rank, it is more convenient than the requirement of All in [18].
机构地区 东北大学理学院
出处 《沈阳师范大学学报(自然科学版)》 CAS 2016年第3期333-337,共5页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11071033) 中央高校基本业务费资助项目(090405013)
关键词 秩亏损 最小二乘 SOR方法 AOR方法 BSOR方法 rank deficient least squares SOR method AOR method BSOR method
  • 相关文献

参考文献8

  • 1VARGA R S.Matrix Iterative Analysis[M].Prentice-Hall:Englewood Cliffs,1962:105-113.
  • 2YOUNG D M.Iterative Solution of Large Linear Systems[M].New York:Academic Press,1971:150-160.
  • 3VARGA R S,NIETHAMMER W,CAI D Y.P-cyclic matrices and the symmetric successive overrelaxation method[J].Linear Algebra and Its Applications,1984,58:425-439.
  • 4MARKHAM T L,PLEMMONS R J,NEUMANN M.Convergence of a direct-iterative method for large-cale least squares problems[J].Linear Algebra and Its Applications,1985,69:155-167.
  • 5SANTOS C H,SILVA B P B,YUAN J Y.Block SOR methods for rank-deficient least squares problems[J].Journal of Computational and Applied Mathematics,1998,100:1-9.
  • 6MILLER V A,NEUMANN M.Successive overrelaxation methods for solving the rank deficient least squares problem[J].Linear Algebra and Its Applications,1987,88/89:533-557.
  • 7TIAN H.Accelerate overrelaxation methods for rank deficient linear systems[J].Applied Mathematics and Computation,2003,140:485-499.
  • 8ZHENG B,WANG K.Symmetric successive overrelaxation method for solving the rank deficient linear least squares problem[J].Applied Mathematics and Computation,2005,169:1305-1323.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部