期刊文献+

基于表面肌电信号的无线交互控制系统

Wireless Interaction Control System Based on Surface EMG Signals
下载PDF
导出
摘要 基于表面肌电信号的无线交互控制系统能够带来更为直接自然的交互控制方式。首先根据表面肌电信号的特点设计了信号拾取调理电路,对其进行前置差分放大、滤波和后置放大抬升,以满足信号采集的要求;接着对信号进行采集并将采集数据通过Zig Bee无线传输给交互控制器;然后通过交互操作平台完成控制指令转换控制智能小车的行驶;最后对信号的拾取、采集、无线传输以及小车行驶进行了验证实验。实验表明拾取采集肌电信号满足系统需要。在发射强度为4.5 d Bm、传输速率约25 kbps时,室外40 m以内、室内30 m以内可以有效可靠地进行采集数据的传输;基于小臂肌电信号MAV(Mean Absolute Value)的强弱可以实现小车的启停和加减速控制。本系统的构建为在肌电信号无线控制、康复娱乐等领域进行应用拓展提供了一种有效可行的实现方案。 The wireless interactive control system based on sEMG signals would be more direct and natural. Firstly, according to the characteristics of sEMG signal, the pickup signal conditioning circuit was designed to meet the requirements of the subsequent signal acquisition, including the pre-differential am- plifier circuit, filter circuit and post amplification and level rise circuit. Then the signal acquisition was done and the results were transmitted to the interaction controller through ZigBee wireless mode. Then the controlling instructions of ear driving through were transferred and the interaction control was realized. Fi nally the signal pickup, acquisition, wireless transmission and car travel were tested. The results show that the signal data met system requirement. The transmission of acquisition data below 40 meters outdoor and 30 meters indoor were effective and reliable at 4.5dBm emission intensity and about 25kbps transmis- sion rate. The start, stop, acceleration and deceleration control of car is based on sEMG signal MAV. The developed sEMG-based wireless interaction control system can be used for wireless control and rehabilita- tion applications.
出处 《常州大学学报(自然科学版)》 CAS 2016年第4期76-81,共6页 Journal of Changzhou University:Natural Science Edition
基金 国家自然科学基金项目(61201096 51307010) 江苏省高校自然科学研究项目(13KJB510002)
关键词 表面肌电信号 无线控制 人机交互 surface EMG wireless control human-machine interaction
  • 相关文献

参考文献8

  • 1POURZARE S, AYDEMIR O, KAYIKCIOGLU T. Classification of EEG signals recorded during in facial movements for human- machine interaction E C~// Signal Processing ~ Communications Applications Con- ference. Turkey: Mugla, 2012:1-4.
  • 2PATIL S M, PATIL C G. An approach for human ma- chine interaction using electromyography [J]. Journal of Medical Imaging ~ Health Informatics, 2014, 4 (1) ~ 71-75.
  • 3张毅,刘睿,罗元.基于支持向量机多分类的眼电辅助肌电的人机交互[J].计算机应用,2014,34(11):3357-3360. 被引量:2
  • 4李静,赵丽,任淑艳,段海龙,杨丽.sEMG识别控制系统在虚拟仪器平台上的实现[J].机床与液压,2011,39(13):72-74. 被引量:3
  • 5杨宇,陈香,涂有强,张旭,杨基海.基于表面肌电控制的虚拟人机交互系统[J].系统仿真学报,2010,22(3):651-655. 被引量:10
  • 6WHEELER K R, JORGENSEN C C. Gestures as input: Neuroelectric joysticks and keyboards [J]. IEEE Perva- sive Computing, 2003,2(2) : 56-61.
  • 7WHEELER K R, CHANG M H, KNUTH K H. Ges- turesbased control and EMG decomposition [J] IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2006,36 (4) : 503-514.
  • 8L6PEZ N M, DI SCIASCIO F, SORIA C M, et al. Ro- bust EMG sensing system based on data fusion for myo- electric control of a robotic arm [J]. BioMedical Engi- neering OnLine, 2009, 8(1) :401-407.

二级参考文献21

  • 1徐德友.虚拟现实训练系统中基于手势的人机交互[J].系统仿真学报,2006,18(z2):386-389. 被引量:12
  • 2尹少华,杨基海,梁政,陈香,任焱暄.基于递归量化分析的表面肌电特征提取和分类[J].中国科学技术大学学报,2006,36(5):550-555. 被引量:13
  • 3邓蕊,马永军,刘尧猛.基于改进交叉验证算法的支持向量机多类识别[J].天津科技大学学报,2007,22(2):58-61. 被引量:14
  • 4UNSER M,ALDROUBI A. A Review of Wavelets in Biome -dical Applications [ C ]// Proceedings of the IEEE, 1996.4:626 - 638.
  • 5KELLY M F, PARKER P A, SCOTY R N. The Application of Neural Networks to Myoelectric Signal Analysis:A Preliminary Study [ J ]. IEEE Trans Biomed Eng, 1990 37 ( 3 ) : 221 - 30.
  • 6QIN W, HUA Y. Performace Analysis of the Subspace Method for Blind Channel Identification [ J ]. Signal Processing, 1996,50 (2) :71 - 82.
  • 7PARKER P, SCOTI'ER R. Myoelectric Control of Prosthesis [J]. Crit Rev Biomed Eng,1986,13 (4) :283 -310.
  • 8FARRY K, WALKER L. Myoelectric Teleoperation of Complex Robot Hand [ J ]. IEEE Trans Robot and Automation, 1996,12 (5) :775 - 788.
  • 9AZZERBONI B, FINOCCHIO G, IPSALE M, et al. A New Approach to Detection of Muscle Activation by Independent Component Analysis and Wavelet Transform [ J ]. Computer Science ,2002,2486 : 109 - 116.
  • 10SUNGTAE S, TAFRESHI R, LANGRI R. A performance comparison of hand motion EMG classification[C] // Proceedings of the 2014 Middle East Conference on Biomedical Engineering. Piscataway: IEEE Press, 2014: 353-356.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部