期刊文献+

一种改进的缺失数据协同过滤推荐算法 被引量:2

An improved collaborative filtering recommendation algorithm for missing data
下载PDF
导出
摘要 协同过滤推荐算法是推荐系统研究的热点,近年来,在亚马逊、淘宝等商业系统中获得应用。在实际应用过程中,协同过滤推荐面临数据稀疏和准确性低的问题。作为推荐基础的用户-产品(项目)矩阵通常非常稀疏(存在大量缺失数据),从而导致推荐结果不准确。文章试图在缺失数据情况下提高协同过滤推荐的准确性,聚焦以下两个方面:(1)用户相似度、产品(项目)相似度计算;(2)缺失数据预测。首先,用增强的皮尔森相关系数算法,通过增加参数,对相似度进行修正,提高用户、产品(项目)相似度计算的准确率。接着,提出一种同时考虑了用户和产品(项目)特征的缺失数据预测算法。算法中,对用户和产品(项目)分别设置相似度阈值,只有当用户或产品(项目)相似度达到阈值时,才进行缺失数据预测。预测过程中,同时使用用户和产品(项目)相似度信息,以提高准确度。在模型基础上,用淘宝移动客户端的数据集进行了验证,实验结果表明所提算法比其他推荐算法要优异,对数据稀疏性的鲁棒性要高。 Collaborative filtering recommendation algorithm has been widely studied, and widely applied in recent years in many business sys- tems, such as Amazon, Taobao, etc. In practice, collaborative filtering recommendation algorithm faces the problem of data sparsity and low accuracy. The user-item matrix, which is the basic of collaborative filtering, is usually very sparse (with a large number of missing data), and this leads to inaccurate results. This paper attempts to improve the accuracy of collaborative filtering recommendation from two aspects: ( 1 ) the similarity between users and items ; (2) the prediction of missing data. Firstly, we used the enhanced Pearson Correlation Algorithm to improve the accuracy of user, item similarity calculation by increasing parameters. Then we proposed a new method for predicting missing data, which is based on both the information of users and the information of items. In our algorithm, we set similarity threshold respectively for the user and the item, and only when users or items similarity meet or exceed the threshold, the missing data is predicted. In the prediction process, we used both the user and the item similarity information to improve the accuracy of the algorithm. Finally, through the experimental analysis of the data set of Taobao mobile client, we found that our algorithm is superior to other collaborative filtering algorithms, and the robustness of da- ta sparsity is much higher.
出处 《微型机与应用》 2016年第17期17-19,共3页 Microcomputer & Its Applications
基金 国家自然科学基金资助项目(41174007) 上海财经大学研究生教育创新计划项目(CXJJ-2014-440)
关键词 协同过滤 推荐系统 缺失数据预测 数据稀疏性 collaborative filtering recommender system missing data prediction data sparsity
  • 相关文献

参考文献9

  • 1RESNICK P, IACOVOU N, SUCHAK M, et al. Grouplens: an open architecture for collaborative filtering of netnews [ C ]. Pro- ceedings of ACM Conference on Computer Supported Coopera- tive Work, 1994 : 175-186.
  • 2BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[ C ]. In Pro- ceedings of the 14th Conference on Uncertainty in Articifical In- telligence, 1998:43-52.
  • 3Wang Jun, DEVRIES A P, REINDERS M J T. Unifying user- based and item-based collaborative filtering approaches by simi- larity fusion[ A ]. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval[ C ]. USA : Seatole, 2006:501-508.
  • 4XUE G R, LIN C, YANG Q, et al. Scalable collaborative filte- ring using cluster-based smoothing [ C]. Proceedings 28th In- ternational ACM SIGIR Conference on Research and Develop- ment in Information Retrieval, 2005:114-121.
  • 5Ma Hao, KING I, LYU M R. Effective missing data prediction for collaborate filtering [ C ]. SIGIR 2007 : Proceedings of the Intermational ACM SIGIR Conference on Research and Devel- opment in Information Retrieval, Amsterdam the Netherlands, 2007:39-46.
  • 6黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 7邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 8MCLAUGHLIN M R, HERLOCKER J L. A collaborative filte- ring algorithm and evaluation metric that accurately model the user experience[ C]. International ACM SIGIR Conference on Reseach and Development in Information Retrieral. ACM, 2004 : 329-336.
  • 9HOFMANN T, HOFMANN T. Latent semantic models for col- laborative filtering[J]. ACM Transactions on Information Sys- tems, 2004, 22(1) :89-115.

二级参考文献33

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.

共引文献737

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部