期刊文献+

一类时滞混沌忆阻器神经网络的延迟反同步控制 被引量:2

Anti-lag Synchronization Control of A Class of Delayed Chaotic Memristive Neural Networks
原文传递
导出
摘要 研究了一类时滞混沌忆阻器神经网络的延迟反同步控制问题.通过构造李亚普诺夫函数及采用微分包含理论和Halanay不等式的研究方法,设计了一个线性反馈控制器,并恰当选择控制器增益实现了一类混沌忆阻器神经网络驱动系统与响应系统之间的延迟反同步,所设计的控制器简单并易于实现.最后,仿真例子验证了所设计的控制器的有效性. In this paper, we study the anti-lag synchronization control problem of a class of chaotic memristive neural networks with time-varying delays, and propose a linear feedback controller that employs differential inclusions theory, the Lyapunov function, and the Halanay inequality technique. By choosing proper controller gain, we can achieve anti-lag synchronization of the drive and response systems in this class of chaotic memristive neural networks. In addition, the controller is easily implemented in practice. The results of a numerical simulation example demonstrate the effectiveness of the proposed controller.
作者 楼旭阳 沈君
出处 《信息与控制》 CSCD 北大核心 2016年第4期437-443,共7页 Information and Control
基金 国家自然科学基金资助项目(61473136)
关键词 延迟反同步 忆阻器神经网络 非光滑分析 变时滞 anti-lag synchronization memristive neural networks non-smooth analysis time-varying delays
  • 相关文献

参考文献24

  • 1Chua L O. Memristor-The missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
  • 2Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83.
  • 3Jo S H, Change T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 2010, 10(4): 1297-1301.
  • 4李文林,沈志萍,陈秀琴.统一混沌系统同步及在保密通信中的应用[J].信息与控制,2008,37(6):757-761. 被引量:7
  • 5许碧荣.蔡氏混沌系统网络的混沌同步及其保密通信[J].信息与控制,2010,39(1):54-58. 被引量:8
  • 6Williams R. How we found the missing memristor[J]. Spectrum of IEEE, 2008, 45(12): 28-35.
  • 7薛怀庆,彭建奎,安新磊,张莉,王振乾,胡萍.分数阶混沌系统全状态混合投影同步及在保密通信中的应用[J].信息与控制,2013,42(2):229-235. 被引量:8
  • 8Zhang G D, Shen Y, Sun J W. Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays[J]. Neurocomputing, 2012, 97(11): 149-154.
  • 9Guo Z Y, Wang J, Yan Z. Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays[J]. Neural Networks, 2013, 48(12): 158-172.
  • 10Chen J J, Zeng Z G. On the periodic dynamics of memristor-based neural networks with time-varying delays[J]. Information Sciences, 2014, 279(9): 358-373.

二级参考文献33

  • 1杨秀丽,王陆唐,黄肇眀.混沌通信技术概述[J].微计算机信息,2004,20(12):120-121. 被引量:25
  • 2高心,虞厥邦.Chaos and chaotic control in a fractional-order electronic oscillator[J].Chinese Physics B,2005,14(5):908-913. 被引量:14
  • 3于洪洁,刘延柱.对称非线性耦合混沌系统的同步[J].物理学报,2005,54(7):3029-3033. 被引量:28
  • 4逯俊杰,刘崇新.Realization of fractional-order Liu chaotic system by circuit[J].Chinese Physics B,2007,16(6):1586-1590. 被引量:6
  • 5Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 6Lu J A, Wu X Q, Lu J H. Synchronization of a unified chaotic system and the application in secure communication [J]. Physics Letters A, 2002, 305(6): 365-370.
  • 7Feki M, Robert B, Gelle G, et al. Secure digital communication using discrete-time chaos synchronization [J]. Chaos Solitons & Fractals, 2003, 18(4): 881-890.
  • 8Feki M. An adaptive chaos synchronization scheme applied to secure communication [J]. Chaos, Solitons & Fractals, 2003, 18(1): 141-148.
  • 9Boutayeb M, Darouach M, Rafaralahy H. Generalized statespace observers for chaotic synchronization and secure communication [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(3): 345-349.
  • 10Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Physical Review Letters, 1990, 64(11): 1196-1199.

共引文献20

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部