期刊文献+

Wing Kinematics, Aerodynamic Forces and Vortex-wake Structures in Fruit-flies in Forward Flight 被引量:7

Wing Kinematics, Aerodynamic Forces and Vortex-wake Structures in Fruit-flies in Forward Flight
原文传递
导出
摘要 Wing kinematics in forward-flying fruit-flies was measured using high-speed cameras and flows of the flapping wing were calculated numerically. The large lift and thrust coefficients produced by the wing were explained. The wing flaps along a forward-tilting stroke plane. In the starting portion of a half-stroke (an upstroke or downstroke), the wing pitches down to a small pitch angle; during the mid portion (the wing has built up its speed), it first fast pitches up to a large pitch angle and then maintains the pitch angle; in the ending portion, the wing pitches up further. A large aerodynamic force (normal to the wing surface) is produced during the mid portion of a half-stroke. The large force is produced by the fast-pitching-up rotation and delayed-stall mechanisms. As a result of the orientation of wing, the thrust that propels the insect is produced by the upstroke and the major part of the vertical force that supports the weight is produced by the downstroke. In producing the thrust the upstroke leaves a "vortex ring" that is almost vertical, and in producing the vertical force the downstroke leaves a "vortex ring" that is almost horizontal. Wing kinematics in forward-flying fruit-flies was measured using high-speed cameras and flows of the flapping wing were calculated numerically. The large lift and thrust coefficients produced by the wing were explained. The wing flaps along a forward-tilting stroke plane. In the starting portion of a half-stroke (an upstroke or downstroke), the wing pitches down to a small pitch angle; during the mid portion (the wing has built up its speed), it first fast pitches up to a large pitch angle and then maintains the pitch angle; in the ending portion, the wing pitches up further. A large aerodynamic force (normal to the wing surface) is produced during the mid portion of a half-stroke. The large force is produced by the fast-pitching-up rotation and delayed-stall mechanisms. As a result of the orientation of wing, the thrust that propels the insect is produced by the upstroke and the major part of the vertical force that supports the weight is produced by the downstroke. In producing the thrust the upstroke leaves a "vortex ring" that is almost vertical, and in producing the vertical force the downstroke leaves a "vortex ring" that is almost horizontal.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期478-490,共13页 仿生工程学报(英文版)
基金 This research was supported by a grant from the National Natural Science Foundation of China (11232002).
关键词 FRUIT-FLY wing kinematics forward flight Navier-Stokes simulation VORTEX fruit-fly, wing kinematics, forward flight, Navier-Stokes simulation, vortex
  • 相关文献

参考文献5

二级参考文献20

共引文献34

同被引文献19

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部