期刊文献+

电/气能源消耗与温度的相关性研究 被引量:1

Correlation study between energy consumption and temperature
下载PDF
导出
摘要 针对能源消耗和保障需要精确的负荷预测,有必要研究温度和能源消耗之间的关系,利用经验模态分解和线性回归分析确定了天气与用电和天然气之间的关系,作为数据处理工具,经验模态分解可以将原始数据划分成若干个本质模态函数。在对温度和电/气负荷进行分解后得到的最低频率模态函数进行线性回归分析,可获得温度与负荷的相关性。实验结果表明,相对于直接运用实际负荷数据,经过经验模态分解后得到的结果可以更好地展示负荷与温度之间的相关性,电负荷、天然气与温度的相关性分别为0.959和-0.859。 In order to understand energy consumption and ensure more precise load prediction, it is essential to identify the variations of energy consumption in response to temperature change. Empirical mode decomposition and linear regression analysis were utilised to identify their relationship. By applying data mining techniques, some outliers from gas load and temperature data points were detected and excluded beforehand to ensure data accuracy. The correlation coefficients of linear regression between gas load and temperature could be identified, which were important index to quantify their relationship. According to half-hourly analysis, the correlation was generally higher at nights than that during day time. For seasonal level, it droped slightly, varying from 0.68 in summer to 0.83 in winter. The correlation coefficients were 0. 959 and 0. 859 respectively.
出处 《能源工程》 2016年第3期74-78,共5页 Energy Engineering
关键词 经验模态分解 线性回归分析 相关系数 温度影响 empirical mode decomposition linear regression analysis correlation coefficients temperature effect
  • 相关文献

参考文献19

  • 1FEINBERG E A, GENETHLIOU D. Load forecasting [ A1. In: Applied Mathematics for Restructured Elec- tric Power Systems: Optimization, Control, and Com- putational Intelligence ,2005.
  • 2LI S, ZHANG D, ROGET A B, et al. Integrating home energy simulation and dynamic electricity price for demand response study[ J]. IEEE Transactions on Smart Grid ,2014,5(5) :779 -788.
  • 3CHEN H, CANIZARES C A, SINGH A. ANN-based short-term load forecasting in electricity markets [ C ]// In Proc IEEE Power Engineering Society Winter Meet- ing, 2001.
  • 4FAY D, RINGWOOD J V. On the influence of weath- er forecast errors in short-term load forecasting models [J]. IEEE Trans Power System, 2010,25:1751 - 1758.
  • 5KARIMI T, SADEGHIMOGHADAM M R, SHAK- OURI H G. Investigation of temperature variation effects on natural gas consumption in Iran [ C ]//In: Power and Energy Engineering Conference (AP- PEEC ), 2011.
  • 6SIMUNEK M, PELIKtN E. Temperatures data prepro- cessing for short-term gas consumption forecast [ C 1// In: Industrial Electronics, ISlE 2008.
  • 7FAGIANI M, SQUARTINI S, BONFIGLI R, et al. Short-term load forecasting for smart water and gas grids: A comparative evaluation: A comparative evalu- ation[ C]//In: IEEE 15th International Conference on Environment and Electrical Engineering ( EEEIC ) , 2015.
  • 8DOUGLAS A P, BREIPOHL A M, LEE F N, et al. The impacts of temperature forecast uncertainty on Bayesian load forecasting [ J]. IEEE Transactions on Power Systems, 1998,13 (4) : 1507 - 1513.
  • 9SONG K B, HA S K, PARK JW, etal. Hybrid load forecasting method with analysis of temperature sensi- tivities [ J ]. IEEE Transactions on Power Systems, 2006,21 (2) :869 - 876.
  • 10HIPPERT H S, PEDREIRA C E. Estimating temper- ature profiles for short-term load forecasting: neural networks compared to linear models [ J]. IEE Pro- ceedings on Generation, Transmission and Distribu- tion, 2004,151(4) :543 -547.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部