期刊文献+

一类具有多时滞部分依赖捕食系统的Hopf分支

Hopf Bifurcation for a Class of Partially Dependent Predator-prey System with Multiple Delays
下载PDF
导出
摘要 研究了一类具有多时滞和部分依赖捕食系统正平衡点的局部稳定性和产生Hopf分支的条件,然后运用拓扑度理论把局部Hopf分支延拓至全局Hopf分支. In this paper,we study the local stability of positive balanced point and the condition of generating Hopf bifurcation for a class of partially dependent predator-prey system with multiple delays,then extend the local Hopf bifurcation to the global Hopf bifurcation by applying the theory of topological degree.
作者 高超
机构地区 连云港开放大学
出处 《江苏第二师范学院学报》 2016年第6期4-6,共3页 Journal of Jiangsu Second Normal University
关键词 时滞 捕食系统 HOPF分支 delay predator-prey model Hopf bifurcation
  • 相关文献

参考文献2

二级参考文献21

  • 1XIAO Dongmei,Ll Wenxiao HAN Maoan. Dynamics in a ratio-dependent predator-prey model with predator harvesting[J]. Journal of Mathematical Analysis and Application, 2006,324 : 14-29.
  • 2XIAO Min, CAO Jinde. Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: analysis and computation[J]. Mathematical and Computer Modelling, 2009,50:360-379.
  • 3PEI Yongzhen,LI Changguo,CHEN Lansun. Continuous and impulsive harvesting strategies in a stagestructured predator-prey model with time delay[J]. Mathematics and Computers in Simulation, 2009, 79:2994-3008.
  • 4KAR T K. Selective harvesting in a prey-predator fishery with time delay [J]. Mathematical and Computer Modelling, 2003,38 : 449-458.
  • 5GAN Qintao,XU Rui, YANG Pinghua. Bifurcation and chaos in a ratio-dependent predator-prey system with time delay[J]. Chaos, Solitons and Fractals, 2009,39 : 1883-1895.
  • 6RUAN Shigui, WEI Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J]. Dynamics of Continuous, Discrete and Impulsive Systems, 2003,10 : 863-874.
  • 7HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1981.
  • 8Ma, Z., Stability of predation models with time delay [J], Applicable Analysis, 22 (1986),169-192.
  • 9Freedman, H. I. & Rao, V. S. H., Stability criteria for a system involing two time delays[J], SIAM J. Appl. Anal., 46(1986), 552-560.
  • 10Lu, Z. & Wang, W., Global stability for two-species Lotka-Volterra systems with delay[J], J. Diff. Eqns., 208(1997), 277-280.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部