期刊文献+

非晶硅/微晶硅叠层电池的模拟研究 被引量:3

Simulation of a-Si∶H/μc-Si∶H Tandem Solar Cells
下载PDF
导出
摘要 电流匹配和隧穿复合结是影响氢化非晶硅/氢化微晶硅叠层电池性能的两个关键因素。文章采用wxAMPS模拟软件研究了氢化非晶硅/氢化微晶硅叠层电池中顶电池与底电池的厚度匹配对电池短路电流的影响,以及隧穿复合结的中间缺陷态密度和掺杂浓度对叠层电池性能的影响。研究发现当顶电池和底电池的本征层厚度分别为200和2 000nm、中间缺陷态提高到1017 cm^(-3)·eV^(-1)以上,且掺杂浓度提高到5×10^(19) cm^(-3)时,叠层电池获得最佳性能:换效率为15.60%,短路电流密度为11.68mA/cm^2,开路电压为1.71V。 Current matching and tunneling recombination junction are two crucial factors that influence the performance of a-Si : H/μc-Si : H tandem solar cells. In this paper, studided is the influence of the top and bottom cells thickness matching on short circuit current densitys as well as the middle defect state density and the doping concentration of tunneling recombination junction on the the performance of tandem solar cells by using the computer program wxAMPS. The simulation results show that the solar cells present the best performace as the efficiency of 15.6%, short current density of 11. 68 mA/cm^2 and open-circuit current of 1. 71 V when the intrinsic layer thickness from top to bottom is set to be 200 and 2 000 nm, and meanwhile the middle defect state density and the doping concentration are set to be 1017 cm^-3eV^-1 and 5 X 1019 cm^-3 , respectively.
出处 《半导体光电》 CAS 北大核心 2016年第4期482-486,491,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61076055) 复旦大学应用表面物理国家重点实验室开放课题(KF2015_02) 浙江省重点科技创新团队项目(2011R50012) 浙江省重点实验室项目(2013E10022)
关键词 非晶硅/微晶硅叠层电池 理论模拟 缺陷态密度 掺杂浓度 a-Si : H/μc-Si : H tandem solar cells theoretical simulation defect statedensity doping concentration
  • 相关文献

参考文献14

  • 1Staebler D L,Wronski C R. Reversible conductivity changes indischarge produced amorphous Si [J]. Appl. Phys. Lett.,1977, 31(4): 292-294.
  • 2Meier J. Fliickiger R, Keppner H, et al. Completemicrocrystalline p-i-n solar cell-Crystalline or amorphouscell behavior[J], Appl. Phys. Lett.,1994,65(7) : 860-862.
  • 3Keppner H, Meier J, Torres P,et al. Microcrystalline siliconand micromorph tandem solar cells[J], Appl. Phys. A, 2002,69(2):179-187.
  • 4Chang P K,Lu C H,Yeh C H, et al. High efficiency a-Si :H/a-Si s H solar cell with a tunnel recombination junction anda n-type ^c-Si ! H layer[J]. Thin Solid Films, 2012, 520:3684-3687.
  • 5Zhang Cheng, Li Xiaofeng,Shang Aixue, et al. Performance-improved thin-film a-Si : H/juc-Si : H tandem solar cells bytwo-dimensionally nanopatterning photoactive layer [ J ]?Nanoscale Research Lett.,2014, 9(1):73.
  • 6Klein S,Rohde M, Buschbaum S, et al. Throughput optimizeda-Si/pc-Si tandem solar cells on sputter-etched ZnO substrates[J]. Solar Energy Materials &. Solar Cells, 2012,98: 363-369.
  • 7Zheng X X,Zhang X D, Yang S S, et al. Effect of the n/ptunnel junction on the performance of a-Si 5 H/a-Si : H/^tc-Si:H triple-junction solar cells.[J]. Solar Energy Materials St-Solar Cells, 2012,101(1):15-21.
  • 8Ding K,Kirchartz T, Pieters B E. et al. Characterization andsimulation of a-Si : H/^tc-Si J H tandem solar cells[J]. SolarEnergy Materials Solar Cells’ 2011,95(12) :3318-3327.
  • 9Kwon S W,Lim K S. Fabrication of a n-p-p tunnel junction fora protocrystalline silicon multilayer/amorphous silicon tandemsolar celi[J]. J. Non'crystalline Solids,2006, 352(9) : 1847-1850.
  • 10Hegedus S S, Kampas F, Xi J. Current transport inamorphous silicon n/p junctions and their application as“tunnel” junctions in tandem solar cells [J]. Appl. Phys.Lett.,1995,67(6):813-815.

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部