期刊文献+

掺氮氧化石墨烯二氧化钛复合材料的合成及其光催化活性 被引量:2

Preparation and photocatalytic activity of nitrogen-containing graphene oxide/TiO_2 composite materials
下载PDF
导出
摘要 采用低温水热法,以四氯化钛为钛源,尿素为氮源,聚乙二醇(PEG-4000)为分散剂,在较低的水热温度下合成了高分散氮掺杂纳米二氧化钛/氧化石墨烯(GO)复合材料,利用XRD、TEM、FT-IR、Raman对合成样品的晶型、形貌及结构进行了表征。以染料亚甲基蓝为目标降解物,以可见光为光源,对样品的光催化活性进行评价。结果表明,用水热法合成的高分散氮掺杂纳米二氧化钛/氧化石墨烯复合材料表现出良好的光催化活性。 The highly dispersed N-doped titanium dioxide nanoparticles/graphene oxide composite material is prepared via a low temperature hydrothermal method,using four titanium chloride as the titanium source,urea as nitrogen source and polyethylene glycol( PEG-4000) as dispersant. XRD,TEM,FT-IR and Raman are used to characterize the crystal form,morphology and strucdture of the obtained composite material. The photocatalytic activity of the sample is evaluated through the decomposition of the methylene blue solution under visible light irradiation. The results show that the highly dispersed N-doped nano titanium dioxide/graphene oxide composite exhibits excellent photocatalytic activity.
出处 《现代化工》 CAS CSCD 北大核心 2016年第8期101-104,共4页 Modern Chemical Industry
基金 国家自然科学基金资助项目(21307009) 江苏省先进催化与绿色制造协同创新中心资助项目(201601061058412427)
关键词 聚乙二醇 氮掺杂纳米二氧化钛/氧化石墨烯 光催化 水热法 polyethylene glycol N-doped titanium dioxide nano particles/graphene oxide photocatalysis hydrothermal method
  • 相关文献

参考文献16

  • 1Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surface: Principles, mechanisms, and selected results [ J ]. Chem Rev, 1995, 95:735 - 758.
  • 2Xuan P, Yong Z, Shu L, et al. Comparing graphene-TiO~ nanowire and graphene-TiO2 nanoparticle composite photoeatalysts [ J ]. Acs Applied Materials & Interfaces,20 l 2,4 ( 8 ) : 3944 - 3950.
  • 3Fabrizio S, Gul Z, Kaiwen H, et al. Tuning TiO~ nanoparticle mar- phology in graphene-TiO2 hybrids by graphene surface modification [J]. Nanoseale,2014,6(12) :6710 -6719.
  • 4Yang M Q, Zhang N, Xu Y J. Synthesis of fullerene-, carbon nano- tube-, and grapheme-TiO2 nanocomposite photoeatalysts for selec- tive oxidation:A comparative study [ J ]. Acs Appl Mater Interfaces, 2013,5(3) :1156 - 1164.
  • 5Ping C, Zhi Y, Hong W, et al. TiO2-graphene nanocomposites for photocatalytie hydrogen production from splitting water[ J ]. Interna- tional Journal of Hydrogen Energy ,2012,37(3 ) :2224 -2230.
  • 6Shen J, Yu L, Li T,et al. One-pot polyelectrolyte assisted hydmther- real synthesis of TiO2-reduced graphene oxide nanocomposite [ J ]. Materials Chemistry & Physics ,2012,133 ( 1 ) :480 - 486.
  • 7Marcano D C, Kosynkin D V, Berlin J M, et al. Improved Synthesis of Graphene Oxide [ J ]. Acs Nano,2010,4 ( 8 ) :4806 - 4814.
  • 8Kim H I, Kim S, Kang J K, et al. Graphene oxide embedded into TiO2 nanofiber:Effective hybrid photoeatalyst for solar convemion [J]. Journal of Catalysis,2014,309(6) :49 -57.
  • 9Dubey P K,Tiwari R S,Tripathi P,et al. Synthesis of reduced gra- phene oxide-TiO2 nanopartiele composite systems and its applica- tion in hydrogen production [ J ]. International Journal of Hydrogen Energy, 2014,39 ( 29 ) : 16282 - 16292.
  • 10Luisa M Pastrana-Martinez, Sergio Morales-Torres, Vlassis Likodi- mos, et al. Advanced nanostructured photocatalysts based on re- duced graphene oxide-TiO2 composites for degradation of diphen- hydramine pharmaceutical and methyl orange dye [ J ]. Applied Ca- talysis B : Environmental ,2012,123 - 124:241 - 256.

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部