摘要
采用HYSYS建立轻烃回收装置工艺模型,通过灵敏度分析选择低温分离温度、脱乙烷塔底温度和脱丁烷塔底温度为回归参数,基于响应面方法(RSM)建立装置C_3收率等考察指标与回归参数间的回归模型与优化模型。经分析得到,低温分离温度、脱乙烷塔底温度和脱丁烷塔底温度可显著影响装置C_3收率,且显著度大小关系为:脱乙烷塔底温度>低温分离温度>脱丁烷塔底温度;脱乙烷塔底温度与低温分离温度间交互作用大于脱乙烷塔底温度与脱丁烷塔底温度间交互作用。以C_3收率最大化为优化目标,LPG满足GB 11174—2011为约束条件,对优化模型求解得出最优操作参数:低温分离温度-72℃、脱乙烷塔底温度30.5℃、脱丁烷塔底温度138.0℃。在此条件下,装置C_3收率理论上可提升6.15%。
The model for a light hydrocarbon recovery unit is built using HYSYS. The cryogenic separation temperature( t1),the temperature in de-ethanizer bottoms( t2) and the temperature in de-butanizer bottoms( t3) are chosen as the regression parameters though sensitivity analysis. Regression model and optimization model are constructed between regression parameters and target parameters such as C_3 yield on the basis of RSM. The results indicate that the cryogenic separation temperature,the temperature in de-ethanizer bottoms and the temperature in de-butanizer bottoms all make significant contribution to C_3 yield. The influence order of those parameters is t2 t1 t3. Furthermore,the interaction between the cryogenic separation temperature and the temperature in deethanizer bottoms has greater influence than that between the temperature in de-ethanizer bottoms and the temperature in de-butanizer bottoms. In order to increase the C_3 yield,the optimization model is solved within the constraint that LPG meets GB 11174—2011. The optimal conditions are- 72℃( t1),30. 5℃( t2) and 138. 0℃( t3). Under such condition,C_3 yield can theoretically increase by 6. 15%.
出处
《现代化工》
CAS
CSCD
北大核心
2016年第8期178-181,183,共5页
Modern Chemical Industry
关键词
轻烃回收
C3收率
RSM
交互作用
优化
light hydrocarbon recovery
C_3 yield
RSM
interaction
optimization