期刊文献+

基于多层神经网络的中分辨SAR图像时间序列建筑区域提取 被引量:5

Medium Resolution SAR Image Time-series Built-up Area Extraction Based on Multilayer Neural Network
下载PDF
导出
摘要 为提高合成孔径雷达(Synthetic Aperture Radar,SAR)图像时间序列建筑区域提取的准确率和稳定性,该文结合时间序列图像的特点,提出了一种基于多层神经网络的建筑提取方法。该方法使用单幅SAR图像进行样本的粗略标记,并从经过直方图规定化处理后的时间序列图像中获得大量样本。通过单幅SAR图像生成的少量样本确定网络的深度,并从时间序列生成的样本中筛选出具有更高质量的样本作为最终模型的训练样本。利用数量大且质量高的训练样本学习得到模型参数。使用包含38幅25 m分辨率ENVISAT ASAR图像的数据集进行两组对比实验,实验结果中该文方法的最低准确率和最低Kappa系数分别90.2%和0.725,均高于其它3种传统方法,算法的稳定性以及准确率都有显著提高。此外,该方法还具有人工操作少、推广性强、训练高效等优点。 To improve the accuracy and stability of built-up area extraction from Synthetic Aperture Radar(SAR) image time series, in this paper, we propose a multilayer neural-network-based built-up area extraction method that combines the characters of time-series images. The proposed method coarsely tags single images and obtains a large number of samples from time-series images that have been processed by a histogram specification procedure. To generate a training sample dataset, we use samples generated from one image to determine network depth and select samples with higher accuracy from the sample set taken from the time- series images. The final model is trained by the selected large and high quality training dataset. We perform two comparison experiments with 38 25-m resolution ENVISAT ASAR images. Using the proposed method, we achieved 90.2% minima accuracy and a 0.725 minima Kappa coefficient, which are much higher than those of the three conventional methods. Thus, the accuracy and stability of built-up area extraction are significantly improved. In addition, the method proposed in this paper has the advantages of requiring minimal manual operation, well generalization, and training efficiency.
出处 《雷达学报(中英文)》 CSCD 2016年第4期410-418,共9页 Journal of Radars
基金 国家自然科学基金(61301025) 中国科学院百人计划~~
关键词 多层神经网络 合成孔径雷达 时间序列 建筑提取 Multilayer neural network Synthetic Aperture Radar (SAR) Time-series Built-up extraction
  • 相关文献

参考文献3

二级参考文献45

  • 1Scott Papson and Ram M Narayanan. Classification via the shadow region in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 969-979.
  • 2Cui Jingjing, Jon Gudnason, and Mike Brookes. Radar shadow and superresolution features for automatic recognition of MSTAR targets[C]. IEEE International Radar Conference, Arlington, VA, USA, 2005: 534-539.
  • 3Jakulin A. Machine Learning Based on Attribute Inter- actions[D]. [Ph.D. dissertation], The University of Jubljana, 2005.
  • 4Jiquan Ngiam, Aditya Khosla, Mingyu Kim, et al.. Multimodal deep learning[C]. Proceedings of the 29th International Conference on Machine Learning (ICML), University of Edinburgh, Scotland, 2012: 1-9.
  • 5Hinton G E and Salakhutdinov R R. Reducing the dimensionMity of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6Hinton G E, Osindero S, and Teh Y W. A fast learning Mgorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554.
  • 7Vincent P, Larochelle H, Lajoie I, et al.. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(2010): 3371-3408.
  • 8Hinton G E. UTML-TR 2010-003 A practical guide to training restricted boltzmann machines[R]. University of Toronto: Toronto, Hinton G E, August 2010.
  • 9Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief net model for visual area V2[J}. Advances in Neural Information Processing Systems, 2008: 873-880.
  • 10Yan S C, Xu D, Zhang B Y, et al.. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.

共引文献17

同被引文献19

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部