期刊文献+

基于改进MF-DFA和SSM-FCM的液压泵退化状态识别方法 被引量:11

Degradation state identification method of hydraulic pump based on improved MF-DFA and SSM-FCM
下载PDF
导出
摘要 针对液压泵振动信号通常具有非线性强和信噪比低的特点,提出了一种基于改进多重分形去趋势波动分析(MF-DFA)和半监督马氏距离模糊C均值(SSM-FCM)的液压泵退化状态识别方法。该方法首先引入滑动窗口技术改进传统MF-DFA方法在时间序列数据分割过程中存在的不足,提高MF-DFA方法的计算精度;然后利用改进MF-DFA方法计算液压泵多重分形谱参数,并分析了不同分形谱参数对液压泵退化状态的反映能力,选取奇异指数α_0和广义Hurst指数波动均值Δh(q)作为退化特征量;最后利用半监督马氏距离模糊C均值方法实现了液压泵退化状态识别,并以液压泵实测数据为例验证本文所提方法的有效性。 Aiming at the characteristic that the vibration signals of hydraulic pump usually have strong nonlinearity and low signal to noise ratio,this paper presents a hydraulic pump degradation state identification method based on improved multi-fractal detrended fluctuation analysis (MF-DFA) and semi-supervised Mahalanobis fuzzy c-means (SSA-FCM). First of all, the sliding window technology is introduced to improve the deficiency in the time series data partitioning of traditional MF-DFA method and enhance the calculation accuracy of the MF-DFA method. And then, the improved MF-DFA method is used to calculate four kinds of muhi-fractal spectrum parameters of hydraulic pump. The presenting capability of five fractal spectrum parameters on hydraulic pump degradation state is analyzed, and as a result the singular index ao and the mean of the fluctuation of generalized Hurst index, Att(q) are selected as the degradation features. Finally, SSA-FCM method is adopted to achieve the hydraulic pump degradation state identification. The hydraulic pump real test data are taken as examples to verify the effectiveness of the proposed method.
机构地区 军械工程学院
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第8期1851-1860,共10页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51275524)项目资助
关键词 液压泵 退化状态识别 去趋势波动分析 模糊C均值 hydraulic pump degradation state identification detrended fluctuation analysis fuzzy C-mean
  • 相关文献

参考文献13

二级参考文献152

共引文献242

同被引文献116

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部