期刊文献+

双金属NiCu/MgO催化剂上葡萄糖氢解制备高附加值C2-C4化学品(英文) 被引量:3

Hydrogenolysis of Glucose to Value-added C2-C4 Compounds over Bimetallic NiCu/MgO Catalysts
原文传递
导出
摘要 采用共沉淀法制备了不同Ni/Cu比的NiCu/MgO双金属催化剂,并通过N_2物理吸附、X射线衍射(XRD)、X射线光电子能谱(XPS)和程序升温还原等方法对NiCu/MgO催化剂结构进行表征.表征结果表明,Cu和Ni之间存在协同相互作用,NiMgO_2的存在抑制了镍物种的还原和Cu-Ni合金的形成,催化剂的Ni/Cu比和焙烧温度对其表面金属组成有非常重要的影响.以葡萄糖氢解反应为探针反应,考察了Ni/Cu比、焙烧温度、H_2压力、反应温度、反应时间等因素对NiCu/MgO催化性能的影响.研究表明相对于单金属催化剂,双金属催化剂对葡萄糖氢解生成C2-C4和1,2-PD具有较高的催化活性,这与铜镍之间的协同作用有关. A series of bimetallic NiCu/MgO catalysts with different Ni/Cu ratios were prepared by co-precipitation route. The structural properties of NiCu/MgO catalysts were determined by N2-physisorption, X-ray diffraction, temperature-programmed reduction and X-ray photoelectron spectroscopy. The results indicated that the synergetic effect of copper and nickel existed and the formation of NiMgO2 inhibited reduction of Ni species and formation of Cu-Ni alloy. The surface composition of the catalysts was significantly altered by adjusting Ni/Cu ratios and calcination temperatures. The hydrogenolysis of glucose was employed for evaluating the catalytic performance of the bimetallic NiCu/MgO catalysts. It was found that the bimetallic cata- lysts exhibited higher activity for the hydrogenolysis of glucose to C2-C4 products and 1,2-PD compared to the monometallic catalyst, due to the synergistic effect between Cu and Ni.
出处 《分子催化》 EI CAS CSCD 北大核心 2016年第4期324-337,共14页 Journal of Molecular Catalysis(China)
基金 supported by the National Natural Science Foundation of China(21503028,21573031 and 21428301) the Fundamental Research Funds for the Central Universities(DUT15ZD106)
关键词 葡萄糖氢解 Cu Ni/Mg O C2-C4化学品 1 2-PD glucose hydrogenolysis CuNi/MgO C2-C4 1,2-PD
  • 相关文献

参考文献50

  • 1Ruppert A M, Weinberg K, Palkovits R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to plat- form chemicals[ J]. Angew Chem lnt Ed, 2012, 51( 11 ) : 2564-2601.
  • 2Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydro- carbons to fuels and chemicals [ J ]. Angew Chem Int Ed, 2007, 46(38) : 7164-7183.
  • 3Abbadi A, van Bekkum H. Effect of pH in the Pt-eat- alyzed oxidation of D-glucose to D-gluconic acid [ J ]. J Mol Catal A: Chem , 1995, 97(2): 111-118.
  • 4林凯,辛嘉英,王艳,杨阳,夏春谷.生物还原制备Au/γ-Al_2O_3催化葡萄糖氧化动力学研究[J].分子催化,2014,28(5):427-435. 被引量:6
  • 5龙向东,李泽龙,高广,夏春谷,李福伟.乙酰丙酸催化加氢制备γ-戊内酯的研究进展[J].分子催化,2014,28(4):384-392. 被引量:7
  • 6林凯,辛嘉英,陈丹丹,张兰轩,王艳,夏春谷.负载型纳米金催化葡萄糖氧化研究进展[J].分子催化,2014,28(1):89-95. 被引量:10
  • 7Witoflska I, Frajtak M, Karski S. Selective oxidation of glucose to gluconic acid over Pd-Te supported catalysts [ J]. Appl Catal A: Gen, 2011,401( 1 ) : 73-82.
  • 8Rinsant D, Chatel G, Jerome F. Efficient and selective oxidation of D-Glucose into gluconic acid under low-fre- quency ultrasonic irradiation [ J]. Chem Cat Chem, 2014, 6(12) : 3355-3359.
  • 9Liu C, Zhang C, Liu K, et al. Aqueous-phase hydroge- nolysis of glucose to value-added chemicals and biofuels:A comparative study of active metals [ J ]. Biomass Bioen- ergy, 2015, 72(1) : 189-199.
  • 10Liang D, Liu C, Deng S, et al. Aqueous phase hydro- genolysis of glucose to 1,2-propanediol over copper cata- lysts supported by sulfated spherical carbon [ J ]. Catal Commun, 2014, 54(1) : 108-113.

二级参考文献84

  • 1Lei Wang, Dan Yang, Jin Wang, et al. Ambient tempe- rature CO oxidation over gold nanoparticles ( 14 nm) sup- ported on Mg(OH) z nanosheets [ J ]. Catalysis Communi- cations, 2013, 36: 38-42.
  • 2Ruihui Liu, Nansha Gao, Feng Zhen,et al. Doping effect of Al2O3 and CeO2 on Fe2O3 support for gold catalyst in CO oxidation at low-temperature[ J ]. Chemical Engineer- ing Journal, 2013, 225: 245-253.
  • 3Wang L C, Tahvildar Khazaneh M, Widmann D, et al. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst -A first step toward identifying a redox mechanism in the reverse water-gas shift reaction [ J ].Journal of Catalysis, 2013, 302 : 20-30.
  • 4Liu Xiao-yu, Guo Ping-jun, Wang Bin, et al. A compa- rative study of the deactivation mechanisms of the Au/ CeO2 catalyst for water-gas shift under steady-state and shutdown/start-up conditions in realistic reformate [ J ]. Journal of Catalysis, 2013, 300 : 152-162.
  • 5Gil S, Marchena M, Sanehez-Silva L, et al. Effect of the operation conditions on the selective oxidation of glycerol with catalysts based on Au supported on carbonaceous materials [ J ]. Chem, ical Engineering Journal, 2011, 178 : 423-435.
  • 6Gil S, Munoz L, Sanchez-Silva L, et al. Synthesis and characterization of Au supported on carbonaceous materi- al-based catalysts for the selective oxidation of glycerol [ J ]. Chemical Engineering Journal, 2011, 172 ( 1 ) : 418-429.
  • 7Zhan Guo-wu, Huang Jia-le, Du Ming-ming, et al. Li quid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: High ac- tivity and durability [ J ]. Chemical Engineering Journal, 2012, 187: 232-238.
  • 8Ma Shu-qi, Li Gang, Wang Xiang-sheng. Direct synthe- sis of hydrogen peroxide from H2/O2 and oxidation of thi- ophene over supported gold catalysts[ J ]. Chemical Engi- neering Journal, 2010, 156(3): 532-539.
  • 9Solsona B, Garcia T, Aylon E, et al. Promoting the ac- tivity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion [ J]. Chemical Engineering Journal, 2011, 175:271 - 278.
  • 10Pina C D, Falletta E, Prati L, et al. Selective oxidation using gold [ J ]. Chemical Society Reviews, 2008, 37 (9) : 2077 -2095.

共引文献18

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部