期刊文献+

一种改进的基于图论的图像分割方法 被引量:5

An Improved Image Segmentation Method Based on Graph Theory
下载PDF
导出
摘要 由于传统基于图论的图像分割方法是基于像素级别的,随着像素的增多,其应用也受到了限制,因此,提出一种改进的图像分割方法。该图像分割方法利用Dijkstra算法,将图像的像素点聚集形成超像素;应用Kruskal算法,得到最小生成树,确定并删除最小生成树的不一致边,完成图像分割。实验结果表明,改进方法分割的区域内部特征具有较好的均匀性和一致性。 The traditional image segmentation method based on graph theory is based on pixel level, whose application is limited when pixel number gets larger. So an improved image segmentation algorithm is proposed, in which image pixels are aggregated to form a super pixel using the Dijkstra algorithm and the Kruskal algorithm is used to get minimum spanning tree, determine and delete the inconsistent minimum spanning tree, and complete image segmentation. The experimental results show that the im- proved algorithm has the characteristics of regional segmentation uniformity and good consistency.
作者 叶青 胡昌标
出处 《计算机与现代化》 2016年第9期64-67,共4页 Computer and Modernization
基金 湖南省教育厅科学研究基金资助项目(13C714) 怀化学院重点学科建设资助项目
关键词 图论 图像分割 最小生成树 最短路径 不一致边 graph theory image segmentation minimum spanning tree shortest path inconsistent side
  • 相关文献

参考文献18

  • 1Urquhart R. Graph theoretical clustering based on limitedneighborhood sets[ J] ? Pattern Recognition, 1982,15(3):173-187.
  • 2Wu Z, Leahy R. An optimal graph theoretic approach todata clustering: Theory and its application to image seg-mentation [J ]. IEEE Transactions on Pattern Analysis andMachine Intelligence,1993,15(11) :1101-1113.
  • 3Felzenszwalb P F, Huttenlocher D P. Image segmentationusing local variation [ C ] // IEEE Computer Society Confer-ence on Computer Vision and Pattern recognition. 1998 :98-104.
  • 4Felzenszwalb P F, Huttenlocher D P. Efficient graph-basedimage segmentation[ J] . International Journal of ComputerVision, 2004,59(2) :167-181.
  • 5Boykov Y, Veksler 0, Zabih R. Fast approximate energyminimization via graph cuts [ J ]. IEEE Transactions on Pat-tern Analysis & Machine Intelligence, 2001, 23 ( 11 );1222-1239.
  • 6刘锁兰,王江涛,王建国,杨静宇.一种新的基于图论聚类的分割算法[J].计算机科学,2008,35(9):245-247. 被引量:12
  • 7叶青,唐鹏举.一种改进的基于MST的聚类算法[J].计算机与现代化,2011(8):17-19. 被引量:2
  • 8叶青,彭小宁.图象分割算法的改进研究[J].哈尔滨师范大学自然科学学报,2012,28(1):41-45. 被引量:1
  • 9Boykov Y, Jolly M P. Interactive organ segmentation using graph cuts [ M ]//bledica/Image Computing and Computer- Assisted Intervention. 2000,1935:276-286.
  • 10Boykov Y, Kolmogorov V. An experimental comparison ofmin-cut/maxflow algorithms for energy minimization in vi-sion [J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2004,26(9) :1124-1137.

二级参考文献50

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 3陈大力,薛定宇,高道祥.图像混合噪声的模糊加权均值滤波算法仿真[J].系统仿真学报,2007,19(3):527-530. 被引量:15
  • 4Jiang D,Tang C ,Zhang A. Cluster analysis for gene expres- sion data: A survey [ J ]. IEEE Transactions on Knowledge and Data Engineering,2004,16( 11 ) :1370-1386.
  • 5Madeira S C, Oliveira A L. Biclustering algorithms for bio- logical data analysis : A survey [ J ]. IEEE/ACM Transac- tions on Computational Biology and Bioinformatics,2004,1 ( 1 ) :24-45.
  • 6Steinbach M, Karypis G, Kumar V. A Comparison of Docu- ment Clustering Techniques [ R ]. Technical Report, 00- 034, University of Minnesota, Minneapolis ,2000.
  • 7SergiosTheodoridis,KonstantinosKoutroumbas.模式识别(第3版)[M].李晶皎,等译.北京:电子工业出版社,2006.
  • 8Jarvis R A. Shared near neighbor maximal spanning trees for cluster analysis [ C ]//Proceedings of the 4th Interna- tional Joint Conference on Pattern Recognition. Kyoto, Ja- pan, 1978:308-313.
  • 9Zahn C T. Graph-theoretical methods for detecting and de- scribing gestalt clusters [ J ]. IEEE Transactions on Comput- ers, 1971,20( 1 ) :65-86.
  • 10Theodoridis S, Koutroumbas K. Pattern Recognition [ M ]. Academic Press, 1999.

共引文献14

同被引文献47

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部