期刊文献+

基于MODIS数据和BFAST方法的植被变化监测 被引量:7

Monitoring the changes of vegetation based on MODIS data and BFAST methods
下载PDF
导出
摘要 植被是联结土壤、大气和水分的自然"纽带",在全球气候变化研究中具有"指示器"的作用。对归一化植被指数(normalized difference vegetation index,NDVI)时间序列分析,可以为相关部门的工作和决策提供更好的支持。使用MODIS NDVI数据结合BFAST(breaks for additive seasonal and trend)方法实现对老哈河流域及周边地区的植被变化监测,并确定其NDVI时间序列出现突变点的时间节点。结合气象数据以及数据本身的质量作为影响因子,分析出现突变点的主要原因。研究结果表明,降水量、相对湿度、温度、日照时数、流域蒸发量与NDVI变化趋势呈正相关,风速与NDVI变化趋势相关性很小。降水量对NDVI变化的影响具有滞后性,滞后时间与降水量大小有关。 Vegetation is a natural "link" which links soil, air and water and an "indicator" in global climate change research. Using normalized difference vegetation index (NDVI) time -series analyses, we can provide better support for the relevant researches and decision - making. Using MODIS NDVI data binding with BFAST (breaks for additive seasonal and trend) method, the authors implemented monitoring vegetation dynamics in the Laohahe River Basin and the surrounding areas, and identified its NDVI time -series abrupt change points occurring in time. The meteorological data and the quality of the data itself were also used as an influence factor analysis of the main reason for the breakpoints. It is found that precipitation, relative humidity, temperature, sunshine and water evaporation are positively correlated with NDVI trends, while wind speed is less correlated with NDVI trends. What' s more, the precipitation and sunshine hour impact on NDVI change has a certain lag.
出处 《国土资源遥感》 CSCD 北大核心 2016年第3期146-153,共8页 Remote Sensing for Land & Resources
基金 水利部公益性行业科研专项经费项目"东北灌区节水灌溉生态与增产效应评估研究"(编号:201401001) 国家自然科学基金项目"复杂地形条件下多源遥感数据森林生物量协同反演研究"(编号:41101308)及"北方半干旱区典型土地利用变化的水文效应"(编号:41201027)共同资助
关键词 NDVI 时间序列 BFAST 变化监测 突变点 NDVI time - series BFAST change monitoring breakpoints
  • 相关文献

参考文献10

  • 1刘蕾.2001—2005年新疆植被覆盖动态变化及原因分析[J].干旱环境监测,2007,21(3):146-148. 被引量:5
  • 2Verbesselt J,Hyndman R,Newnham G,et al.Detecting trend and seasonal changes in satellite image time series[J].Remote Sensing of Environment,2010,114(1):106-115.
  • 3方秀琴,任立良.西辽河的老哈河流域土地利用遥感动态监测[J].地球信息科学,2009,11(1):125-131. 被引量:5
  • 4Townshend J R G,Justice C O.Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations[J].International Journal of Remote Sensing,1988,9(2):187-236.
  • 5Huete A,Didan K,Miura T,et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J].Remote Sensing of Environment,2002,83(1/2):195-213.
  • 6Huete A,Justice C,van Leeuwen W.Modis Vegetation Index(MOD 13):Algorithm Theoretical Basis Document[EB/OL].(1999-04-30).http://eospso.gsfc.nasa.gov/ftp_ATBD/REVIEW/MODIS/ATBD-MOD-13/atbd-mod-13.pdf.
  • 7Verbesselt J,Hyndman R,Zeileis A,et al.Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J].Remote Sensing of Environment,2010,114(12):2970-2980.
  • 8Linderholm H W.Growing season changes in the last century[J].Agricultural and Forest Meteorology,2006,137(1/2):1-14.
  • 9Bai J S,Perron P.Computation and analysis of multiple structural change models[J].Journal of Applied Econometrics,2003,18(1):1-22.
  • 10屈艳萍,康绍忠,张晓涛,张宝忠,李思恩.植物蒸发蒸腾量测定方法述评[J].水利水电科技进展,2006,26(3):72-77. 被引量:32

二级参考文献60

共引文献39

同被引文献91

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部