期刊文献+

基于LVQ与SVM算法的近红外光谱煤产地鉴别 被引量:7

Near-Infrared Spectrum of Coal Origin Identification Based on LVQ with SVM Algorithm
下载PDF
导出
摘要 传统煤产地鉴别方法一般以发热量、挥发分、粘结指数、哈氏可磨指数和坩埚膨胀序数作为分类指标,过程复杂耗时较多、耗费巨大的人力、物力并且无法直接快速的得到煤样产地等问题,借助近红外光谱技术快速无损检测的优势,利用基于SVM的留一算法对光谱数据集进行异常样本剔除,得到包含正确光谱信息的煤样光谱数据集,构造基于SVM算法与LVQ算法的定性分析模型,完成基于近红外光谱分析技术的煤产地的快速鉴别,无需对煤样的各种指标进行汇总并且人为预测。针对SVM分析模型中存在随机参数优化问题,引入PSO算法对SVM模型中的损失参数C和核函数半径g进行改进,得到最优参数,最后引入计算准确率的方法对比以上模型并进行评价分析。实验一共收集了加拿大、俄罗斯、澳大利亚、印度尼西亚、中国内蒙等5个地区的煤样光谱数据集,数据集共计305组煤样样本,其中异常样本共计10组,分别选择各国煤炭光谱的前31组作为训练样本,后6组数据作为测试样本,结果表明各分类模型的分类准确率均能达到75%以上,其中基于PSO算法改进的SVM分析模型的准确率可达到96.67%,仅一个样本出现问题,可快速高效地实现基于近红外光谱分析技术的煤产地的鉴别。 Traditional coal origin identification method generally take the calorific value,volatiles,caking index,hardgrove index and crucible swelling number as the classification index,process complicated,use manpower and material resources and can’t get coal sample origin directly,take advantages of the near-infrared spectrum technology fast nondestructive testing,due to be col-lected in the original spectrum that contains some or false spectral data,using Leave-one-out cross validation based on SVM to e-liminate abnormal sample of spectral data set,get the correct spectral information of coal sample spectra data sets,and construct the qualitative analysis model based on SVM algorithm and LVQ algorithm,complete based on near-infrared spectral analysis technology of coal origin identification,don’t need to make summary and coal samples of various indicators forecast.In view of the random parameter optimization problems in SVM model,the PSO-SVM model of loss parameters (C)and the radius of ker- nel function (g)are improved,get the optimal parameters,finally,calculation accuracy of the method above contrast model is introduced to evaluate and analysis.Experiments collect the near infrared spectrum of Canada,Russia,Australia,Indonesia and China’s five regions,all the data sets,a total of 305 samples,of which 10 simples is abnormal samples and the first 31 groups of the coal spectra were selected as training samples,6 sets of data after as test samples.Results show that the classification accu-racy of classification model can achieve 75% above,including the analysis of the SVM model based on PSO algorithm to improve the accuracy can reach 96.67%,only a sample appear problem,it will be realized quickly and efficiently based on near-infrared spectral analysis technology of coal origin identification.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第9期2793-2797,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51304194) 江苏省自然科学基金项目(BK20140215) 中国博士后科学基金项目(2014M551695)资助
关键词 煤产地鉴别 近红外光谱 SVM LVQ PSO Coal origin identification Near-infrared spectrum LVQ SVM PSO
  • 相关文献

参考文献11

  • 1DONGDa-xiao,SHAOLong-yi(董大啸,邵龙义).煤炭技术,2015,(2):54.
  • 2WANGJiang-rong,WENHui,ZHAOQuan-bin(江荣,文晖,赵权斌).选煤技术,2014,5:64.
  • 3Xia Wencheng, Yang Jianguo, Liang Chuan. Powder Technology, 2013, 233: 186.
  • 4He L L, Melnlchenko Y B, Mastalerz M, et al. Energy & Fuels, 2012, 26(3): 1975.
  • 5CHEN Peng-qiang, LU Hui-shan, YAN Hong-wei(陈鹏强,陆辉山,闫宏伟).工矿自动化,2013,39(8):68.
  • 6YANGKai,CAIJia-yue,ZHANGChao-ping,etal(杨凯,蔡嘉月,张朝平,等).光谱学与光谱分析.2014,34(12):3277.
  • 7Lewis A T, Jones K, Lewis K E, et al. Carbohydrate Polymers, 2013, 92(2) : 1294.
  • 8Sun Zhanquan. Geoffrey Fox. International Journal of Intelligent Transportation Systems Research, 2014, 12(1); 20.
  • 9Bron E E, Smits M, van Swieten J C, et al. Feature Selection Based on SVM Significance Maps for Classification of Dementia, in Machine Learning in Medical Imaging, 2014, LNCS 8679; 272.
  • 10Milad Jajarmizadeh, Elham Kakaei Lafdani, Sobri Harun, et al. KSCE Journal of Civil Engineering, 2015, 19(1): 345.

同被引文献77

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部