期刊文献+

基于近红外光谱的橄榄油品质鉴别方法研究 被引量:5

Study on Quality Identification of Olive Oil Based on Near Infrared Spectra
下载PDF
导出
摘要 目前市面上销售的橄榄油主要分为特级初榨橄榄油和普通初榨橄榄油两类,为了鉴别两种不同品质的橄榄油,提出了一种应用siPLS-IRIV-PCA算法的橄榄油品质鉴别的新方法。基于橄榄油的近红外光谱数据,应用联合区间偏最小二乘法(siPLS)对橄榄油的近红外光谱进行了波长区间优选,使用交叉验证均方根误差(RMSECV)评估模型的性能并选择最优波长区间,通过迭代保留信息变量(IRIV)算法从最优波长区间中选择特征波长,根据选择的特征波长构建主成分分析(PCA)模型。对90组特级初榨橄榄油和90组普通橄榄油样本进行了判别鉴定。PCA将1 427个波长变量作为输入变量,前两个主成分贡献率为51.891 8%和26.473 2%;siPLS-PCA将408个波长变量作为输入变量,前两个主成分贡献率为56.039 1%和36.2355%;siPLS-IRIV-PCA将6个波长变量作为输入变量,前两个主成分贡献率为66.347 6%和32.304 3%。结果表明,与PCA和siPLS-PCA鉴别方法相比,siPLS-IRIV-PCA具有最佳的鉴别性能。 Currently on the market,the sale of olive oil is mainly divided into extra virgin olive oil and common virgin olive oil. In order to identify the qualities of two different olive oils,a new method to identify the quality of olive oil with siPLS-IRIV-PCA algorithm is developed.Based on the near infrared spectral data of olive oil,the efficient spectral subintervals are selected with a synergy interval partial least squares (siPLS).The performance of the model is evaluated by using the root mean square error of cross-validation (RMSECV).The characteristic wavelengths are selected from the efficient spectral subintervals by iteratively retains informative variables (IRIV)algorithm.Principal component analysis (PCA)model is constructed based on the selected characteristic wavelengths.The samples of 90 groups of extra virgin olive oil and 90 groups of common olive oil are identified. PCA uses 1 427 wavelength variables as input variables and the contribution rates of the first two principal components are 51.891 8% and 26.473 2% respectively.siPLS-PCA uses 408 wavelength variables as input variables and the contribution rates of the first two principal components are 56.039 1% and 36.2355%.siPLS-IRIV-PCA uses 6 wavelength variables as input vari-ables and the contribution rates of the first two principal components are 66.347 6% and 32.3043%.The result shows that, compared with PCA and siPLS-PCA,siPLS-IRIV-PCA has the best identification performance.The method is simple and con-venient and has a high identification degree which offers a new approach to identify the quality of olive oil.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第9期2798-2801,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(31271875) 江苏省自然科学青年基金项目(BK20140538) 中国博士后科学基金项目(2014M550273)资助
关键词 近红外光谱 橄榄油 联合区间偏最小二乘法 迭代保留信息变量 主成分分析 Near infrared spectroscopy Olive oil siPLS IRIV PCA
  • 相关文献

参考文献9

  • 1Sun Xiaodan, Li Xinhui, Shi Weimin, et al. Journal of Pingdingshan University, 2015, (5): 57.
  • 2Sinelli N, Casale M, Di E V, et al. Food Research International, 2010, 43: 2126.
  • 3Hui Jiang, Guohai Liu, Congli Mei, et al. Anal. Bioanal. CherrL , 2012, 404: 603.
  • 4Jiang Hui, I.iu Guohai, Mei Congli, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97:277.
  • 5GUOZhi-ruing,ZHAOJie-wen,CHENQuan-sheng,etal(郭志明,赵杰文,陈全胜,等).光学精密工程,2009,17(8):1839.
  • 6LINFen-fang,CHENZhu-lu,WANGKe,etal(林芬芳,陈祝炉,王珂,等).红外与毫米波学报,2009,28(4):277.
  • 7Yong-Huan Yun, Wei-Ting Wang, Min-Li Tan, et al. Analytica Chimica Acta, 2014, 807: 36.
  • 8Norgaard L, Saudland A, Wagner J, et al. Appl. Speetrose. , 2000, 54: 413.
  • 9Leardi R, Nrgaard L. J. Chemometrie, 2004, 18: 486.

同被引文献72

引证文献5

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部