期刊文献+

红外光谱发射率测量系统的温漂修正方法 被引量:1

Correction Methods of Temperature Drift for Infrared Spectral Emissivity Measurement System
下载PDF
导出
摘要 针对探测器光谱响应度温漂现象对红外光谱发射率测量系统重复性的影响,分析探测器温度与输出电压之间的变化规律,提出了基于多项式拟合的光谱响应度温漂修正方法。研究探测器自身温度与其光谱响应度的函数关系,对探测器光谱响应度随温度变化的曲线进行数据拟合,得到探测器温度-光谱响应度的拟合方程,计算光谱响应度的温漂修正系数,修正探测器的输出电压,消除光谱响应度温漂现象对探测器输出电压造成的影响。研制光谱响应度温漂修正装置,测得探测器光谱响度的温漂曲线,对比指数拟合曲线和多项式拟合曲线与测量曲线的吻合度,结果表明6阶多项式拟合曲线的一致性较好,提高了基于积分球反射计的光谱发射率测量系统的重复性。 For the influence of temperature drift of the spectral responsivity on the repeatability infrared spectral emissivity meas-urement system,a temperature drift correction method is proposed based on the polynomial fitting.By analyzing the function of detector output voltage depended on its temperature.After studying the functional relationship between the temperature and spectral responsivity of detector,the spectral response curve varies with temperature is fitted and get the fitting equation.Calcu-lating the drift correction factor of spectral responsivity,the output voltage of infrared detector is corrected.The effect of spec-tral response drift on the output voltage of detector is eliminated.With the development of temperature drift correction device of spectral responsivity,the temperature drift curve of spectral response is measured.Compared to the exponential fitting,the fit-ting consistency of sixth-order polynomial curve is excellent.Because of the application of this method,the repeatability of spec-tral emissivity measurement system is improved.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第9期3003-3007,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(61275095)资助
关键词 光谱响应度 温漂修正 多项式拟合 发射率测量系统 Spectral responsivity Temperature drift correction Polynomial fitting Emissivity measurement system
  • 相关文献

参考文献15

  • 1Hanssen L M, Mekhontsev S N, Zeng J, et al. International Journal of Thermophysics, 2008, 29(1) : 352.
  • 2Cagran C P, Hanssen L M, Noorma M, et al. International Journal of Thermophysies, 2007, 28(2) : 581.
  • 3Dai J M, Fan Y, Sun X G, et al. International Journal of Thermophysics, 2002, 23(5) : 1401.
  • 4Righini F, Spisiak J, Bussolino G, et al. International Journal of Thermophysics, 1999, 20(4) : 1095.
  • 5Seti6n-Ferndndeza I, Echdniza T, Gonzdlez-Ferndndeza L, et al. Solar Energy Materials and Solar Cells, 2013, 117: 390.
  • 6Feng G, Li Y, Wang Y, et al. Optics Letters, 2012, 37(3): 299.
  • 7Gatebe C K, Butler J, Cooper J W. Applied Optics, 2007, 46(31) : 7640.
  • 8Kurosawa R, Inoue T, Baba Y, et al. Measurement Science and Technology, 2301, 24(1): 015603.
  • 9Shi D, Liu Q, Zhu Z, et al. Infrared Physics & Technology, 2014, 64: 119.
  • 10Tang H, Sun Q, Yi C G, et al. Journal of Materials Science, 2012, 47(5): 2162.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部