期刊文献+

聚吡咯驱动器迟滞非线性特性探究

An Inquiry into Nonlinear Hysteresis Characteristics of PPy Actuator
下载PDF
导出
摘要 在仿生学领域中,聚吡咯驱动器因具有结构简单,适应性强,抗电磁干扰等优点得到广泛应用;通过对驱动器的传递函数进行建模分析,得出其存在迟滞非线性特性,且该特性会造成驱动器跟踪定位精度低,可控性差,所以采用PI模型对驱动器进行迟滞建模,并研究其迟滞特性.首先,对传递函数模型中得到的输出位移进行误差分析,得知驱动器存在迟滞非线性特性,将系统模型分为纯迟滞模型及传递函数模型两部分;其次,利用PI模型的算法对不同输入频率信号下的系统分别构建迟滞模型,并通过分析基于迟滞模型的系统模型的输出结果,得出驱动器存在迟滞非线性特性,且该特性与输入信号频率无关;最后通过比较试验测量输出数据与仿真结果,验证结论的有效性. In the field of bionics,PPy actuator has been widely used with simple structure,strong adaptability and resistance to electromagnetic interference,etc.Modeling the transfer function showed that PPy actuator exists hysteresis characteristics,which would lead low tracking accuracy and poor controllability.Hysteresis model was set up of PPy actuator based on Prandtl-Ishlinskii(PI)model thenthe hysteresis characteristics were analyzed.We found that PPy actuator has nonlinear hysteresis characteristics after did the error analysis of the output through the transfer function,then the model series was simplified astwo parts:transfer function model and pure hysteresis model.Hysteresis models under different input frequency signal were set for system.Through the analysis of the output results of the system based on hysteresis model,PPy actuator has nonlinear hysteresis characteristics,which have nothing to do with the input signal frequency.Finally the effectiveness of the conclusion above has been verified by comparing experiment measurement of output data and the simulation results.
出处 《测试技术学报》 2016年第4期306-312,共7页 Journal of Test and Measurement Technology
基金 湖南省教育厅重点资助项目(13A081) 湖南省研究生科研创新资助项目(2015SCX18)
关键词 聚吡咯 迟滞性 传递函数 算子 密度函数 Polypyrrole hysteresis characteristics transfer function operator density function
  • 相关文献

参考文献4

二级参考文献42

  • 1Nakano H. Angstrom positioning system using a giant magnetostriction actuator for high power applications. In:Proceedings of the Power Conversion Conference. Osaka,2002, Osaka: IEE of Japan, 2002(3): 1 102~1 107
  • 2Yoshio Y,Takaaki M. Micro-positioning and actuation devices using giant magnetostriction materials. Robotics and Automation, Proceedings of ICRA 2000 IEEE International Conference on Robotics and Automation, San Francisco,2000, San Francisco: OMNPRESS, 2000(4): 3 635~3 640
  • 3Jenner A G, Smith R J E, Wilkinson A J. Actuation and transduction by giant magnetostrictive alloys. Mechatronics,2000(10): 457~466
  • 4Natale C, Velard F, Visone C. Modelling and compensation of hysteresis for magnetostrictive actuators. Advanced Intel ligent Mechatronics, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Como, 2001, Hoes Lane: IEEE Service Center, 2001(2):744~749
  • 5Krasnosel'skii M, Pokrovskii A. Systems with Hysteresis Berlin: Springer-Verlag, 1989
  • 6Mayergoyz I. Mathematical models of Hysteresis. New York: Springer-Verlag, 1991
  • 7Brown W F. Micromagnetics. New York: John Wiley & Sons, 1963
  • 8GE P, JOUANEH M. Generalized PREISACH model for hysteresis nonlinearity of piezoceramic actuators [J]. Precision Engineering, 1997, 20(2): 99-111.
  • 9GE P, JOUANEH M. Tracking control of a piezoceramic actuator[J]. IEEE Trans. on Control Systems Technology, 1996,4(3): 209-215.
  • 10BOLEY C D, HODGDON M L. Model and simulation of hysteresis in magnetic cores[J]. IEEE Trans. on Magnetics, 1989, 25(5): 3 922-3 924.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部