摘要
We report the Hong–Ou–Mandel(HOM) interference, with visibility of 91%, produced from two independent single photons retrieved from collective atomic excitations in two separate cold-atom clouds with high optical depths of 90. The high visibility of the HOM dip is ascribed to the pure single photon in the Fock state that was generated from a dense-cold-atom cloud pumping by a short pulse. The visibility is always the same regardless of the time response of the single-photon detectors. This result experimentally shows that the single photons retrieved are in a separable temporal state with their idler photons.
We report the Hong–Ou–Mandel(HOM) interference, with visibility of 91%, produced from two independent single photons retrieved from collective atomic excitations in two separate cold-atom clouds with high optical depths of 90. The high visibility of the HOM dip is ascribed to the pure single photon in the Fock state that was generated from a dense-cold-atom cloud pumping by a short pulse. The visibility is always the same regardless of the time response of the single-photon detectors. This result experimentally shows that the single photons retrieved are in a separable temporal state with their idler photons.
基金
supported by National 973 Program of China(No.2011CB921604)
the National Natural Science Foundation of China(NSFC)through the major research plan(Precision Measurement Physics Grant No.91436211)
the NSFC Key Research Program(No.11234003)
the Young Scientists Research Program(No.11204086)