期刊文献+

Closely interleaved self-comparison method applied to precise measurement

Closely interleaved self-comparison method applied to precise measurement
原文传递
导出
摘要 A self-comparison method with closely interleaved switching states is analyzed and used to evaluate some type-B uncertainties of an ^87Rb atomic fountain clock. Free from additional frequency reference, the method can be applied to a running fountain to reach a precision beyond its uncertainty. A verification experiment proves an uncertainty of 9.2 × 10^-16 at an averaging time of 242500 s. Further, the method is applied to measure light shift, and no visible relative frequency shift is found in the fountain within the uncertainty of 2.1 × 10^-15. When applied to the evaluation of a cold collisional shift, the result gives a -2.2 × 10^-15 shift with a 9.5 × 10^-16 uncertainty. A self-comparison method with closely interleaved switching states is analyzed and used to evaluate some type-B uncertainties of an ^87Rb atomic fountain clock. Free from additional frequency reference, the method can be applied to a running fountain to reach a precision beyond its uncertainty. A verification experiment proves an uncertainty of 9.2 × 10^-16 at an averaging time of 242500 s. Further, the method is applied to measure light shift, and no visible relative frequency shift is found in the fountain within the uncertainty of 2.1 × 10^-15. When applied to the evaluation of a cold collisional shift, the result gives a -2.2 × 10^-15 shift with a 9.5 × 10^-16 uncertainty.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第8期35-39,共5页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.61275204 and 91336105
关键词 CISC uncertainty clock verification switching deviation precise visible running switched CISC uncertainty clock verification switching deviation precise visible running switched
  • 相关文献

参考文献21

  • 1J. Guena, M. Abgrall, A. Clairon, and S. Bize, Metrologia 51, 108 (2014).
  • 2S. Peil, J. L. Hanssen, T. B. Swanson, J. Taylor, and C. R. Ekstrom, Metrologia 51, 263 (2014).
  • 3Y. Sortais, S. Bize, C. Nicolas, and A. Clairon, Phys. Rev. Lett. 85, 3117 (2000).
  • 4C. Fertig and K. Gibble, Phys. Rev. Lett. 85, 1622 (2000).
  • 5T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E. Parker, J. H. Shirley, N. Ashby, S. Barlow, and S. R. Jefferts, Metrologia 51, 174 (2014).
  • 6B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, Nature 506, 71 (2014).
  • 7N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013).
  • 8C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
  • 9Y. Ovchinnikov and G. Marra, Metrologia 48, 87 (2011).
  • 10F. Fang, M. Li, P. Lin, W. Chen, N. Liu, Y. Lin, P. Wang, K. Liu, R. Suo, and T. Li, Metrologia 52, 454 (2015).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部