期刊文献+

Adaptive speed of sound correction with photoacoustic tomography for imaging quality optimization

Adaptive speed of sound correction with photoacoustic tomography for imaging quality optimization
原文传递
导出
摘要 This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science. This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第8期76-80,共5页 中国光学快报(英文版)
基金 supported by National Natural Science Foundation of China(No.61201425) the Natural Science Foundation of Jiangsu Province(No.BK20131280) the Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 correction dynamically modality infrastructure repeatedly biomedical optimize reconstructed beads gelatin correction dynamically modality infrastructure repeatedly biomedical optimize reconstructed beads gelatin
  • 相关文献

参考文献27

  • 1M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 22 (2006).
  • 2G. Torres, K. J. Parker, B. Castaneda, and R. Lavarello, Int. Ultrason. Symp. 0380, 1 (2015).
  • 3J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, Med. Phys. 39, 7262 (2012).
  • 4Y. Liu, L. Nie, and X. Chen, Trends Biotechnol. 34, 420 (2016).
  • 5Y. Wang, J. Yuan, S. Du, X. Liu, G. Xu, and X. Wang, Chin. Opt. Lett. 13, 061001 (2015).
  • 6J. Xia, J. Yao, and L. V. Wang, Electron. Waves 147, 1 (2014).
  • 7L. V. Wang and S. Hu, Science 335, 1458 (2012).
  • 8R. X. Cheng, C. Tao, and X. J. Liu, Chin. Phys. B. 24, 11 (2015).
  • 9B. Cong, K. Kondo, M. Yamakawa, and T. Shiina, in IEEE Int. Ultrason. Symp. 1368 (2014).
  • 10H. He and D. C. Liu, in ICBBE International Conference on Bioinformatics and Biomedical Engineering-IEEE 1 (2009).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部