期刊文献+

Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class 被引量:1

Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class
原文传递
导出
摘要 The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics(QCD). This has been calculated to the sixth order in experiments.Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign. The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics(QCD). This has been calculated to the sixth order in experiments.Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign.
出处 《Chinese Physics C》 SCIE CAS CSCD 2016年第9期36-40,共5页 中国物理C(英文版)
基金 Supported by Fund Project of Sichuan Provincial Department of Education(16ZB0339) Fund Project of Chengdu Technological University for Doctor(2016RC004) Major State Basic Research Development Program of China(2014CB845402) National Natural Science Foundation of China(11405088,11221504)
关键词 critical point the sixth order cumulant Ising model critical point, the sixth order cumulant, Ising model
  • 相关文献

参考文献41

  • 1L. G. Yaffe and B. Svetitsky, Phys. Rev. D, 26:963(1982).
  • 2A. Roberge and N. Weiss, Nucl. Phys. B, 27:5734(1986).
  • 3M. Fukugita, M. Okawa, and A. Ukawa, Phys. Rev. Lett., 63:1768(1989).
  • 4P. de Forcrand and O. Philipsen, Nucl. Phys. B, 64:2290(2002).
  • 5S. Ejiri, Phys. Rev. D, 78:074507(2008).
  • 6E. S. Bowman and J. I. Kapusta, Phys. Rev. C, 79:015202(2009).
  • 7Y. Aoki, G. Endr?di, Z. Fodor et al, Nature, 443:675(2006).
  • 8M. E. Fisher, and A. E. Ferdinand, Phys. Rev. Lett., 49:169(1967).
  • 9M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B, 34:1841(1986).
  • 10M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D, 60:114028(1999).

同被引文献11

引证文献1

二级引证文献3

  • 1陈丽珠,潘雪,陈晓松,吴元芳.Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class[J].Chinese Physics C,2012,36(8):727-732. 被引量:1
  • 2DENG Wei-bing LIU Hao.One Kind of Mappings with Parametric Representation in Cn[J].Chinese Quarterly Journal of Mathematics,2014,29(3):373-380.
  • 3Jibin Li.Exact parametric representations of orbits defined by cubic Hamiltonian[J].上海师范大学学报(自然科学版),2014,43(5):456-463. 被引量:1
  • 4Haochen Li,Yushun Wang,Mengzhao Qin.A SIXTH ORDER AVERAGED VECTOR FIELD METHOD[J].Journal of Computational Mathematics,2016,34(5):479-498. 被引量:2
  • 5K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2014,38(9):122-138.
  • 6S. Bethke,G. Dissertori,G.P. Salam.QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2016,40(10):132-150.
  • 7S. Hashimoto,J. Laiho,S.R. Sharpe.LATTICE QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2016,40(10):310-320.
  • 8会议录来源索引[J].电子科技文摘,2002,0(12):177-178.
  • 9The Sixth International Conference on Fluid Mechanics (ICFM6)[J].Journal of Marine Science and Application,2011,10(1):104-104.
  • 10苏国珍,欧聪杰,Wang A Qiu-Ping,陈金灿.Finite-size effects in a D-dimensional ideal Fermi gas[J].Chinese Physics B,2009,18(12):5189-5195. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部