期刊文献+

一种面向科研在线的个性化推荐系统

A Personalized Recommendation System for the Research Online
原文传递
导出
摘要 电子邮箱的推送功能对信息传播和推广有重要作用,而科研在线云平台的邮箱推送功能出现信息过载问题后却使得推送邮件可能变成垃圾邮件。为解决该问题,本文介绍了一种基于科研在线云平台的个性化推荐系统,通过推荐模型将资源进行排序,并按周选取得分最高的一部分资源通过推送邮件推荐给用户。系统运行测试表明,通过个性化推荐的动态信息更加符合用户兴趣,有助于增加科研在线团队文档库动态汇总邮件的点击率,增强用户体验。 Push E-mail function plays an important role in information dissemination and promotion, however, with the emergence of information overload, the push email functionality of the Research Online cloud plateform may make the push mail produce spam.To solve this problem, in this paper we personalized one kind cross-application recommendation system based on the Research Online cloud platform. The recommended system sorts resources by recommended models, and recommends to the users those are selected from the highest scoring part of the weekly resource. System tests show that the dynamic information recommended information by the personalized system is more in line with the user's interest. This will help increase the dynamic summary of the document library mail CTR and enhance the user experience.
作者 李沅桐 南凯
出处 《科研信息化技术与应用》 2016年第1期76-83,共8页 E-science Technology & Application
关键词 个性化推荐 跨应用推荐 IFR模型 科研在线 personalized recommendation cross-Application recommendation IFR model the Research Online
  • 相关文献

参考文献12

  • 1南凯,董科军,谢建军,于建军.面向云服务的科研协同平台研究[J].华中科技大学学报(自然科学版),2010,38(S1):14-19. 被引量:37
  • 2于建军,狄焰亮,董科军,南凯.科研在线:云服务模式的网络虚拟科研环境[J].华中科技大学学报(自然科学版),2011,39(S1):33-37. 被引量:15
  • 3YU J, DONG K, NAN K. Duckling: Towards cloud service for scientific collaboration system[C]. Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work Companion. ACM, 2012: 259-262.
  • 4DONG K, NAN K, LI J. Duckling Falcon and SaaS Applications[C]. Proceedings of e-Infrastructures for e-Sciences 2013 A CHAIN-REDS Workshop organised under the aegis of the European Commission (eleS2013). 2013, 1: 5.
  • 5JANNACH D, ZANKER M, FELFERNIG A, et al.Recommender systems: an introduction[M]. Cambridge University Press, 2010.
  • 6BURKE R. Hybrid recommender systems: Survey and experiments [J]. User modeling and user-adapted interaction, 2002, 12(4): 331-370.
  • 7BURKE R. Hybrid web recommender systems[M]. The adaptive web. Springer, 2007:377-408.
  • 8LI L, WANG D, LI T, et al. Scene: a scalable two- stage personalized news recommendation system[C]. Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. ACM, 2011: 125-134.
  • 9MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]. Advances in Neural Information Processing Systems. 2013:3111-3119.
  • 10MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv: 13013781, 2013.

二级参考文献12

  • 1王飞跃.社会计算——科学、技术与人文的数字化动态交融[J].中国基础科学,2005,7(5):5-12. 被引量:41
  • 2Research Online. http:∥www.escience.cn . 2009
  • 3Rajkumar Buyya,Chee Shin Yeo,Srikumar Venugopal." Market-Oriented Cloud Computing:Vision,Hype, and Reality for Delivering IT Services as Computing Utilities". The 10th IEEE International Conference on High Performance Computing and Communications . 2008
  • 4Hey,T,Trefethen,AE.The UK e-Science core programme and the grid. Future Generation Comput Syst . 2002
  • 5Amazon Elastic Compute Cloud(Amazon EC2). http://aws.amazon.com/ec2/ . 2010
  • 6Google App Engine. http:// code.google.com/appengine/docs/quotas.html . 2010
  • 7J C Tang.Findings from observational studies of collaborative work. International Journal of Man Machine Studies . 1991
  • 8G Alonso,F Casati,H Kuno,V Machiraju.Web services: concepts, architectures and applications. . 2004
  • 9Dirk Krafzig,Karl Banke,Dirk Slama.Service-Oriented Architecture Best Practices. . 2004
  • 10Kavitha Ranganathan,Ian Foster.Decoupling Computation and Data Scheduling in Distributed Data-Intensive Applications. International Symposium of High Performance Distributed Computing . 2002

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部