期刊文献+

细菌纤维素纳米金复合材料的制备 被引量:1

Synthesis of functionalized bacterial cellulose for preparing gold nanoparticles
下载PDF
导出
摘要 将两步法非均相反应合成的偕胺肟基细菌纤维素(AOBC)同时用作还原剂和稳定剂在水热条件下直接与氯金酸反应,制备了负载纳米金的偕胺肟基细菌纤维素(AOBC/AuNPs)复合材料。通过红外、紫外、透射电镜、热重分析等手段对复合材料的结构和性能进行了分析和表征,讨论了细菌纤维素在碱液中的活化时间对纳米金制备的影响。结果表明,在活化时间小于8h时,随活化时间延长,负载在纤维素上的纳米金粒子的粒径逐渐变小;在活化时间达8h时,纳米金粒径最小且分布均匀;而当活化时间超过8h时,负载的纳米金粒径又增大。确定纤维素的最佳活化时间为8h。 A two-step synthesis of amidoxime bacterial cellulose (AOBC), which could be used as both the reducing agent and stabilizer for preparation of gold nanoparticles (AuNPs) were investigated with FT-IR, UV-vis, and TEM for its structure, size distribution, morphology of the AOBC/AuNPs. TGA was used to analyze the gold particle content on the bacterial cellulose. It was found that the activated time of bacterial cellulose in NaOH solution had an important effect on the size and distribution of the obtained gold particles. With the increasing activated time in NaOH solution from 0.5 to 8 h, the size of the prepared gold particles was decreased and the size was uniform. The size of gold particles was increased when the activated time was longer than 8 h. Therefore, the optimum activated time of bacterial cellulose in NaOH solution was 8 h for preparing the gold nanoparticles.
出处 《大连工业大学学报》 CAS 北大核心 2016年第4期285-288,共4页 Journal of Dalian Polytechnic University
基金 国家自然科学基金资助项目(51103017)
关键词 偕胺肟基细菌纤维素 纳米金 活化时间 amidoxime bacterial cellulose (AOBC) gold nanoparticles (AuNPs) active time
  • 相关文献

参考文献19

  • 1DANIEL M C,ASTRUC D.Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology[J].Chemical Reviews,2004,104(1):293-346.
  • 2HU M,CHEN J Y,LI Z Y,et al.Gold nanostructures:engineering their plasmonic properties for biomedical applications[J].Chemical Society Reviews,2006,35(11):1084-1094.
  • 3JAIN P K,HUANG X H,El-SAYED I H.et al.Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging,sensing,biology,and medicine[J].Accounts of Chemical Research,2008,41(12):1578-1586.
  • 4ZHANG T J,WANG W,ZHANG D Y,et al.Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing[J].Advanced Functional Materials,2010,20(7):1152-1160.
  • 5HUANG T,MENG F,QI L M.Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering[J].Journal of Physical Chemistry C,2009,113(31):13636-13642.
  • 6HERMES J P,SANDER F,PETERLE T,et al.Gold nanoparticles stabilized by thioether dendrimers[J].Chemistry,2011,17(48):13473-13481.
  • 7SEKHAR A C S,MEERA C J,ZIYSD K V,et al.Synthesis and catalytic activity of monodisperse goldmesoporous silica core-shell nanocatalysts[J].Catalysis Science&Technology,2013,3(5):1190-1193.
  • 8WANG S N,ZHANG M C,ZHANG W Q.Yolkshell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres[J].ACS Catalysis,2011,1(3):207-211.
  • 9LU W B,NING R,QIN X Y,et al.Synthesis of Au nanoparticles decorated graphene oxide nanosheets:noncovalent functionalization by Tween20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol[J].Journal of Hazardous Materials,2011,197:320-326.
  • 10WU X D,LU C H,ZHOU Z H,et al.Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J].Environmental Science:Nano,2014,1(1):71-79.

二级参考文献46

  • 1A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 8 (2009) 543- 557.
  • 2A. Henglein, J. Phys. Chem. 97 (1993) 5457-5471.
  • 3R.C. Hayward, D.A. Saville, I.A. Aksay, Nature 404 (2000) 56-59.
  • 4D. Lee, R.E. Cohen, M.F. Rubner, Langmuir 21 (2005) 9651- 9659.
  • 5Y. Xie, R. Ye, H. Liu, Colloids Surf. A-Physicochem. Eng. Asp. 279 (2006) 175-178.
  • 6J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Acta Biomater. 4 (2008) 707-716.
  • 7C. Wiegand, T. Heinze, U.C. Hipler, Wound Repair Regen. 17 (2009) 511-521.
  • 8X. Liu, T. Lin, J. Fang, G. Yao, H. Zhao, M. Dodson, X. Wang, J. Biomed. Mater. Res. A 94 (2010) 499-508.
  • 9H.L. Liu, S.A. Dai, K.Y. Fu, S. Hu, Int. J. Nanomedicine 5 (2010) 1017-1028.
  • 10F. Zhang, M.P. Srinivasan, J. Colloid Interface Sci. 319 (2008) 450-456.

共引文献1

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部