期刊文献+

基于PLSIM模型的住房建筑物能耗分析 被引量:4

Research on Housing Energy Consumption in Buildings Forecasting Based on PLSIM Model
原文传递
导出
摘要 采用牛津大学Angeliki Xifara使用Ecotect系统模拟的768个不同建筑物数据,尝试将半参数中的部分线性单指标模型(PLSIM)用于住房建筑物负荷的预测研究中。同时采用BP神经网络以及迭代加权最小二乘法分别建立热负荷、冷负荷预测模型,将3种方法所得结果进行比较。研究结果表明部分线性单指标模型在建筑物负荷预测中相对误差均在0.00104以内且更直观,可以为国家调整住房结构、节约能源提供有力的模型支持。 According to the 768 groups of different building data which was simulated by Ecotect by Angeliki Xifara from Oxford University, the article attempted to use partially linear single-index model to predict housing energy by predicting the heat load (HL) and cooling load (CL). At the same time, this paper also use BP neural network and iteratively reweighted least squares to build models to predict the heat load (HL) and cooling load (CL). To compare the results of the three methods, it showed that in terms of forecasting building load, the mse of the partially linear single-index model is less than 0.00104 and it is more intuitive. In terms of Country to adjust the energy structure and formulate energy policy, the model can provide strong support.
出处 《数理统计与管理》 CSSCI 北大核心 2016年第5期770-777,共8页 Journal of Applied Statistics and Management
基金 国家社会科学基金(15BTJ019)
关键词 建筑负荷 部分线性单指标模型(PLSIM) BP神经网络 迭代再加权最小二乘法 building energy, partially linear single-index model (PLSIM), artificial neural networks, iteratively reweighted least squares
  • 相关文献

参考文献13

  • 1Catalina T,Virgone J,Blanco E.Development and validation of regression models to predict monthly heating demand for residential buildings [J].Energy and Buildings,2008,40:1825-1832.
  • 2Kevin K W Wan,Danny H W Li,Dalong Liu et al.Future trends of building heating and cooling loads and energy consumption in different climates [J].Building and Environment,2011,46:223-234.
  • 3Schiavon S,Lee K H5 Bauman F,et al.Influence of raised floor on zone design cooling load in commercial buildings [J].Energy and Buildings,2010,42:1182-1191.
  • 4Li Q,Meng Q,Cai J,et al.Applying support vector machine to predict hourly cooling load in the building [J].Applied Energy,2009,86:2249-2256.
  • 5Tsanas A,Xifara A.Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools [J].Energy and Buildings,2012:1-4.
  • 6薛留根,朱力行.部分线性单指标模型中参数的经验似然置信域[J].中国科学(A辑),2005,35(8):841-855. 被引量:9
  • 7刘锋,乔静然,李飞.部分线性单指标模型的序列相关性检验[J].重庆理工大学学报(自然科学),2012,26(3):120-125. 被引量:2
  • 8Carroll R J,Fan J,Gijbels I,et al.Generalized Partially Linear Single-index Models [J].J.Amer.Statist.Assoc.,1997,92:477-489.
  • 9Yingcun Xia,Wolfgang Hardle.Semi-parametric estimation of partially linear single-index models [J].Journal of Multivariate Analysis,2006,97;1162-1184.
  • 10Peng Lai,Qihua Wang,XiaoHua Zhou.Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model [J].Computational Statistics and Data Analysis,2013.

二级参考文献57

  • 1王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:87
  • 2刘兰娟,谢美萍.基于自适应小波神经网络的数据挖掘方法研究——对我国石油产量的预测分析[J].财经研究,2006,32(3):114-120. 被引量:4
  • 3刘锋,陈敏,邹捷中.部分线性模型序列相关的经验似然比检验[J].应用数学学报,2006,29(4):577-586. 被引量:14
  • 4Ichimura H.Semiparametric least squares(SLS)and weighted SLS estimation of single-index models[J].J Econometrics,1993,58:71-120.
  • 5Horowitz J L,Hardle W.Direct semiparametric estimation of single-index models with discrete covariates[J].J Amer Statist As-soc,1996,91:1632-1640.
  • 6Prasad Naik,Chih-Ling Tsai.Partial least squares estimator for single-index models[J].J R Statist Soc B,2000,62:763-771.
  • 7Carroll R J,Gijbels I,Wang M P.Generalized partially linear single-index models[J].J Amer Statist Assoc,1997,92:477-489.
  • 8Wang J L,Xue L,Zhu L.Estimation for a partial-liner single-index model[J].The Annals of Statistics,2010,38:246-274.
  • 9Hu X M,Liu F,Wang Z Z.Testing serial correlation in semiparametric varying coefficient partial linear errors-in-variables mod-els[J].J Syst Sci Complexity,2006,22:483-494.
  • 10Ichimura H. Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J Econometrics, 1993, 58:71-120.

共引文献57

同被引文献32

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部