期刊文献+

基于统计分类的行人检测方法综述 被引量:2

Survey on Pedestrian Detection Based on Statistical Classification
下载PDF
导出
摘要 作为计算机视觉以及智能交通领域一个重要的研究方向,行人检测技术近年来受到业界广泛关注,其中基于统计分类的方法因为其检测效果好,得到了广泛应用。对基于统计分类的行人检测方法进行综述,归纳了目前用于行人检测的数据集,并给出了每个数据集中各种样本的分布情况;接着总结了行人检测方法中用于目标识别的行人特征及其改进方式;对行人检测主要分类器做了概述;指出了行人检测目前存在的问题并展望了未来的发展方向。 As one of the most important areas of research in the domain of computer vision and intelligent tranffic, pedestrian detection has attacted extensive interest from the research community in recent years. Because the detection based on statistical classification method is efficient, it has been widely applied. Pedestrian detection method was focused based on statistical classification. Standard dataset for evaluation of human detection was reviewed, studying the statistics about these dataset. Extracted features and the improvement on them were summarized. The main classifier for pedestrian detection was summarized. The present problems and future research trends in pedestrian detection were proposed.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第9期2186-2194,共9页 Journal of System Simulation
基金 国家自然科学基金(61300089)
关键词 综述 行人检测 统计分类 数据集 survey pedestrian detection statistical classification dataset
  • 相关文献

参考文献42

  • 1N Brewer, L Andersson, N Pettersson. A new pedestriandataset for supervised learning [C]// IEEE IntelligentVehicles Symp.,USA: IEEE, 2008.
  • 2C Papageorgiou, T Poggio. A trainable system for objectdetection [J]. Int. J. Comput. (S1573-1405), 2000,38(1):15-33.
  • 3P Viola, M Jones. Rapid object detection using a boosted cascade of simple features [C]// Proc. IEEE Conf. Computer. Vision and Pattern Recognition. USA: IEEE, 2001 (1): 511-518.
  • 4R Lienhart, J Maydt. An Extended Set of Haar-likeFeatures for Rapid Object Detection [C]// InternationalConference on Image Processing. USA: IEEE,2002,1:I-900-I-903.
  • 5G Overett, L Petersson, L Andersson, et al. Boosting aheterogeneous pool of fast HOG features for pedestrianand sign detection [C]// Intelligent Vehicles SymposiumIEEE. USA: IEEE, 2009: 584-590.
  • 6Gavrila D. Pedestrian detection from a moving vehicle[C]// Proceedings of European Conference ComputerVision. Dublin, Ireland: Lecture Notes in ComputerScience’ 2000: 37-49.
  • 7Gavrila D, Giebel J, Munder S. Vision-based pedestriandetection: the protector system [C]// Intelligent VehiclesSymposium, Parma, Italy. USA: IEEE Computer Society,2004: 13-18.
  • 8Wu B, Nevatia R, Li Y. Segmentation of multiple,partially occluded objects by grouping, merging,assigning part detection responses [J]. Inf 1 Journal ofComputer Vision (S1573-1405), 2009(82): 185-204.
  • 9Gao W, Ai H Z, Lao S. Adaptive contour features inoriented granular space for human detection andsegmentation [C]// Proceedings of IEEE ConferenceComputer Vision and Pattern Recognition. Miami,Florida, USA. USA: IEEE Computer Society, 2009:1786-1793.
  • 10Sabzmeydani Payam. Mori, Greg Detecting Pedestriansby Learning Shapelet Features Computer Vision andPattern Recognition (CVPR) [C]// 2007 IEEEConference on Minneapolis, MN (2007), USA. USA:IEEE, 2007.

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部