期刊文献+

中冷后回热式布雷顿-逆布雷顿联合循环性能优化" 被引量:1

Performance Optimization for Combined Intercooled Regenerative Brayton and Inverse Brayton Cycles with Regeneration After Inverse Cycle
下载PDF
导出
摘要 对中冷后回热式布雷顿-逆布雷顿联合循环构型进行有限时间热力学分析和优化,推导出了燃料燃烧放热流率、循环净功率、循环热效率和各个部件由于流动不可逆性产生的压力损失与顶循环压气机进口相对压力损失的函数关系。给出了循环净功率的分析和优化结果,以及在燃油消耗和尺寸约束条件下循环热效率的分析和优化结果。通过数值计算,详细分析了各主要设计参数对循环最优性能的影响。研究发现,存在最佳的中冷压比、压气机1进口相对压力损失、压气机3的压比和总压比,使循环功率获得最优值;在燃油消耗和装置尺寸的约束下,存在最佳的中冷压比、压气机1进口相对压力损失和总压比,使循环效率获得最优值;中冷过程能有效提高循环的功率,回热对循环功率影响很小。 The finite time thermodynamic analysis and optimization were carried out for the combined intercooled regenerative Brayton and inverse Brayton cycles with regeneration after the inverse cycle. The analytical formulae about the heat-released rate produced by the burning fuel, the cycle power output, the cycle thermal efficiency and the pressure losses of components due to the flow irreversibility of the working fluid versus the compressor inlet relative pressure drop of the top cycle were derived. The analysis and optimization results of the cycle power output and the cycle thermal efficiency under the constraints of the fuel consumption and the plant size were provided. The effects of the main design parameters on the optimal performances of the cycles were analyzed by detailed numerical examples. The study found that the power output has a maximum with respect to the intercooling pressure ratios, the inlet relative pressure drops of compressor 1, the pressure ratios of compressor 3 and the total pressure ratios. With the constraints of a fixed fuel flow rate and the power plant size, the efficiency can be maximized with respect to the intercooling pressure ratios, the inlet relative pressure drops of compressor 1 and the total pressure ratios. The circulatory power can be effectively improved by the intercooling process while the impact from the regenerative process is little.
出处 《热力透平》 2016年第3期189-195,共7页 Thermal Turbine
基金 国家自然科学基金(51576207)
关键词 中冷回热 布雷顿循环 逆布雷顿循环 联合循环 有限时间热力学 热力学优化 intercooled regenerative Brayton cycle inverse Brayton cycles combined cycle finite time thermodynamics thermodynamic optimization
  • 相关文献

参考文献16

  • 1RAI3CENCO V, VARGAS J V C, BEJAN A. Thermodynamic optimization of a gas turbine power plant with pressure drop irre- versibilities [J~. Transaction of ASME, Journal of Energy Re- sources Technology, 1998, 120(3): 233-240.
  • 2王文华,陈林根,戈延林,孙丰瑞.燃气轮机循环有限时间热力学研究新进展[J].热力透平,2012,41(3):171-178. 被引量:33
  • 3张万里,陈林根,韩文玉,吴智文.正反向布雷顿循环有限时间热力学分析与优化研究进展[J].燃气轮机技术,2012,25(2):1-11. 被引量:18
  • 4张万里.布雷顿、逆布雷顿联合循环的热力学分析与优化[D].武汉:海军工程大学,2006.
  • 5ZHANG W L, CHEN L G, SUN F R. Power and efficiency optimization for combined Brayton and inverse Brayton cycles [J]. Applied Thermal Engineering, 2009, 29 (14): 2885- 2894.
  • 6张万里,陈林根,孙丰瑞.布雷顿-逆布雷顿联合循环最优性能[J].工程热物理学报,2008,29(8):1261-1266. 被引量:6
  • 7ZHANG W L, CHEN L G, SUN F R. Power and efficiency optimization for combined Brayton and two parallel inverse Brayton cycles, Part 2: Performance optimization ~-J~. Pro- ceedings IMechE, Part C: Journal of Mechanical Engineering Science, 2008, 222(3), 405 413.
  • 8CHEN L G, ZHANG W L, SUN F R. Power and efficiency optimization for combined Brayton and two parallel inverse Brayton cycles. Part 1: description and modeling [-J~. Pro- ceedings IMechE, Part C: Journal of Mechanical Engineering Science, 2008, 222(3): 393-403.
  • 9张泽龙.开式回热式布雷顿-逆布雷顿联合循环热力学分析与优化[D].武汉:海军工程大学,2011.
  • 10张泽龙,陈林根,张万里,孙丰瑞.一种新型回热式布雷顿-逆布雷顿联合循环[J].热力透平,2010,39(4):226-233. 被引量:5

二级参考文献44

  • 1陈林根,孙丰瑞,龚建政,陈文振,赖锡棉.给定边界条件下定常态制冷循环的最优化[J].工程热物理学报,1994,15(3):249-252. 被引量:15
  • 2王俊华,陈林根,孙丰瑞.变温热源内可逆中冷回热布雷顿循环功率密度优化[J].汽轮机技术,2005,47(2):95-98. 被引量:7
  • 3王文华,陈林根,孙丰瑞.实际闭式中冷回热燃气轮机循环的效率优化[J].中国电机工程学报,2006,26(1):12-15. 被引量:14
  • 4[12]Gordon C O.Aerodynamics of Aircraft Engine Components.New York:AIAA.1985
  • 5[13]Radcenco V.Optimization Criteria for Irreversible Thermal Processes.Bucharest:Editura Tehnica,1979
  • 6[1]Bejan A.Entropy Generation Through Heat and Fluid Flow.New York:Wiley,Problem 2.2,1982.44
  • 7[2]Bejan A.Entropy Generation Minimization:the New Thcrmodynamics of Finite Size Devices and Finite Time Process.J.Appl.Phys.,1996,79(3):1191-1218
  • 8[3]Chen Lingen,Wu Chih,Sun Fengrui.Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems.Non-Equilib.Thermodyn.,1999,24(4):327-359
  • 9[4]Chen Lingen,Sun Fengrui.Advances in Finite Time Thermodynamics:Analysis and Optimization.New York:Nova Science Publishers,2004
  • 10[5]Radcenco V,Vargas J V C,Bcjan A.Thermodynamics Optimization of a Gas Turbine Power Plant with Pressure Drop Irreversibilities.Trans.ASME,J.Energy Resources Technology,1998,120(3):233-240

共引文献45

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部