期刊文献+

基于多传感器信息融合的滚动轴承故障诊断研究 被引量:15

Rolling Bearing Fault Diagnosis Research Based on Multi-sensor Information Fusion
下载PDF
导出
摘要 由于单一传感器所包含的故障信息不能全面地反映滚动轴承的故障状态,提出了一种基于多传感器信息融合的滚动轴承故障诊断方法。首先,利用不同位置的加速度传感器采集滚动轴承故障振动信号,经集成经验模态分解(EEMD)后,前8个固有模态分量(IMF)的能量值作为分类器支持向量机(SVM)的输入故障特征参量;其次,利用故障特征参量训练分类器SVM,并对测试样本进行分类,实现故障的初步分离;然后,根据混淆矩阵获得各分类器的全局可信度和局部可信度,并与各测试样本的后验概率输出结合实现DS证据理论中基本概率分配函数的赋值;最后,利用DS证据理论实现融合以获得最终诊断结果。试验结果表明:提出的方法可有效融合不同传感器的故障信息,最大限度地避免误诊现象。 Since the fault information obtained by the singular sensor could not reflect the fault condition of rolling element bearing completely,a new fault diagnosis method of rolling element bearing based on the multi-sensor information fusion was proposed in this paper. Firstly,three acceleration sensors of different locations were utilized to collect the vibration signals of rolling element bearing. The first eight energy value of IMF components extracted by ensemble empirical mode decomposition( EEMD)were utilized as the input features of support vector machine( SVM) respectively. Secondly,the fault features of train samples were utilized to train SVM,which were utilized to classify the test samples following. Then the primary fault diagnosis was realized. Thirdly,the global reliability and local reliability of each classifier were obtained from the confusion matrix. The basic probability assignment of each evidence was realized by combining the reliability with posterior probability estimation. Finally,The final fault diagnosis was obtained by using DS evidence theory to fuse the information of each evidence. The result of fault diagnosis exercise shows the high reliability of this proposed method. The method can fuse the fault signal of each sensor effectively and avoid the phenomenon of misdiagnosis.
出处 《仪表技术与传感器》 CSCD 北大核心 2016年第7期97-102,107,共7页 Instrument Technique and Sensor
基金 国家自然科学基金项目(51075220) 高等学校博士学科点专项科研基金项目(20123721110001) 青岛市科技计划基础研究项目(12-1-4-4-(3)-JCH)
关键词 滚动轴承 故障诊断 支持向量机 DS证据理论 信息融合 rolling element bearing fault diagnosis SVM DS evidence theory information fusion
  • 相关文献

参考文献12

  • 1黄浩,吕勇,肖涵,侯高雁.基于PCA和LMD分解的滚动轴承故障特征提取方法[J].仪表技术与传感器,2015(4):76-78. 被引量:7
  • 2WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [ J ].Proceedings of the Royal Society A, 2004, 460(2046) : 1579-1611.
  • 3WU Z H, HUANG N E. Ensemble empirical mode decompo- sition: a noise-assisted data analysis method [ C ].// Advances in Adaptive Data Analysis,2009: 1-41.
  • 4DEMPSTER A P. Upper and low probabilities induced by a muhivalued mapping [ J ]. Annuals of Mathematical Statistical, 1967,38(6) :325-339.
  • 5SHAPER G. A mathematical theory of evidence[ M] .Prince- ton : Princeton University Press, 1976.
  • 6徐从富,耿卫东,潘云鹤.面向数据融合的DS方法综述[J].电子学报,2001,29(3):393-396. 被引量:77
  • 7何明格,殷国富,林丽君,赵秀粉.基于概率支持向量机原理的超声缺陷识别模型研究[J].四川大学学报(工程科学版),2010,42(6):232-238. 被引量:5
  • 8毕建权,鹿鸣明,郭创新,王逸飞,刘潇洋.一种基于多分类概率输出的变压器故障诊断方法[J].电力系统自动化,2015,39(5):88-93. 被引量:22
  • 9PLATT J. Probabilistic outputs for support vector machines and comparison to regularized likelihood method [ J ]. Advance in Large Margin Classifier, 1999,10(3) : 61-74.
  • 10CHANG C C, LIN C J. LIBSVM : a library for support vec- tor machines [J].ACM Transactions on Intelligent Systems and Technology, 2011,2(3) : 389-396.

二级参考文献76

共引文献141

同被引文献155

引证文献15

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部