期刊文献+

基于结构化组稀疏的图像标注

Image annotation based on structured grouping sparsity
下载PDF
导出
摘要 图像中存在颜色、形状和纹理等全局特征以及LBP和SIFT等局部特征,这些异构特征之间存在明显的结构信息。不同视觉特征在表示特定高层语义时重要程度不同,因此,正确的特征选择对于图像标注来说具有十分重要的意义。为了充分利用异构特征之间的结构组效应,提出了一种基于组稀疏的高维特征选择算法及其在图像标注中的应用。通过与其他三种算法在图像标注上的性能对比,证明该算法能得到更优的图像标注结果。 The heterogeneous features can describe various aspects of visual characteristics of images, such as global features (color, shape and texture) or local features (SIFT and LBP). Different heterogeneous features have different structural information. Different groups of heterogeneous features have different intrinsic discriminative power to characterize the semantics inside images. Therefore, to select the right features is of great significance for image annotation. In order to effectively utilize the structural grouping effect among heterogeneous-visual features, a high-dimensional feature selection method based on structured grouping sparsity is proposed, and its application in image annotation is introduced. Comparing with the performance of other three algorithms in image annotation, it is proved that the proposed algorithm can get better image annotation results.
作者 袁莹
出处 《计算机时代》 2016年第9期17-20,共4页 Computer Era
基金 浙江省教育厅科研项目资助(Y201430818)
关键词 异构特征 组稀疏 特征选择 图像标注 heterogeneous features group sparsity feature selection image annotation
  • 相关文献

参考文献1

二级参考文献28

  • 1Yang J, Yu K, Gong Y, Huang T. Linear spatial pyramid matching using sparse coding for image classification. In: Prec. of the Conf. on Computer Vision and Pattern Recognition. Florida: IEEE Computer Society Press, 2009. 1794-1801. [doi: 10.1109/ CVPRW.2009.5206757].
  • 2Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227. [doi: 10.1109/TPAMI.2008.79].
  • 3Yang JC, Wright J, Huang T, Ma Y. Image super-resolution as sparse representation of raw image patches. In: Proc. of the Conf. on Computer Vision and Pattern Recognition. Anchorage: IEEE Computer Society Press, 2008. 1-8. [doi: 10.1109/CVPR.2008. 4587647].
  • 4Yang JC, Tang H, Ma Y, Huang T. Face hallucination via sparse coding. In: Proc. of the Int'l Conf. on Image Processing. San Diego: IEEE Signal Processing Society Press, 2008. 1264-1267. [doi: 10.1109/ICIP.2008.4711992].
  • 5Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society-- Series B (Methodological), 2006,68(1):49-67. [doi: 10.1111/j.1467-9868.2005.00532.x].
  • 6Cao L, Luo J, Liang F, Huang T. Heterogeneous feature machines for visual recognition. In: Proc. of the 2009 IEEE Int'l ConL on Computer Vision. 2009. 1095-1102. [doi: 10.1109%2fICCV.2009.5459401].
  • 7Wu F, Yuan Y, Zhuang YT. Heterogeneous feature selection by group LASSO with logistic regression. In: Proc. of the 2010 Int'l Conf. on Multimedia. Firenze: ACM Press, 2010. 983-986. [doi: 10.1145/1873951.1874129].
  • 8Meier L, Van de Geer S, Bfihlmann P. The group LASSO for logistic regression. Journal of the Royal Statistical Society-Series B (Methodological), 2008,70(1):53-71. [doi: 10.1111/j. 1467-9868.2007.00627.x].
  • 9Zhang S, Huang J, Huang Y, Yu Y, Li H, Metaxas D. Automatic image annotation using group sparsity. In: Proc. of the 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Francisco: IEEE Computer Society Press, 2010. 3312-3319. [doi: 10.1109/CVPR.2010.5540036].
  • 10Wu F, Han YH, Tian Q, Zhuang YT. Multi-Label boosting for image annotation by structural grouping sparsity. In: Proc. of the 2010 Int'l Conf. on Multimedia. Firenze: ACM Press, 2010. 15-24. [doi: 10.1145/1873951.1873957].

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部