摘要
网络流量时间序列受到复杂背景信息干扰时,预测精度不高的问题,提出一种基于四阶累积量自适应特征提取的网络流量预测算法.构建网络流量数据传输结构模型,采用四阶累积量自适应特征提取方法,实现对流量准确预测估计.仿真结果表明,采用该算法进行流量预测,流量预测输出波束的指向性较好,对旁瓣干扰抑制效果较好,说明流量预测的抗干扰能力较强,预测精度高于传统方法.
The network time series is interfered by complex background information,and thus the forecasting is not precise, a network traffic prediction algorithm is thus proposed based on adaptive feature fourth-order cumulant, to make the model of network traffic data transmission structure, to use method of fourth-order cumulant adaptive feature extraction, and to realize ac- curate prediction and consistency estimates for flow . The simulation results show that traffic prediction, traffic prediction output beam directivity is better; sidelobe interference inhibition effect is desirable traffic prediction has strong anti-jamming capability; prediction precision is higher than that of traditional methods.
出处
《西安工程大学学报》
CAS
2016年第4期510-515,共6页
Journal of Xi’an Polytechnic University
基金
广东省高等职业教育教学改革项目(20120201042)
关键词
四阶累积量
特征提取
网络流量
预测算法
four order accumulation
feature extraction
network traffic
prediction algorithm