期刊文献+

丙酮气体传感器的PANI/Au/Al_2O_3电极制备工艺优化 被引量:1

Process optimization for preparing acetone gas sensor based on PANI / Au / Al_2O_3 electrode
下载PDF
导出
摘要 以微制程技术及电化学法制备PANI/Au/Al2O3电极,并组装成电阻式丙酮气体传感器。以恒电流法在不同电流密度下进行三阶段聚合,并利用混合物实验设计法对纳米结构PANI/Au/Al2O3电极的最佳制备工艺条件进行了优化。结果表明:分别固定聚合电流密度为40,60,80p.A/cm2进行三阶段聚合,当聚合电流密度按由小到大顺序,所得的PANI/Au/Al2O3电极稳定性最好。固定聚合电量为35mC,当三阶段电量比为0.35:0.33:0.32时,对于9958×10-6丙酮得到最大的感测电阻变化率为7.55%。丙酮气体浓度在(475—1189)×10-6与(23~118)×10-6范围内,对应灵敏度分别为1.2×10-3和6.4×10-3%/10-6,平均响应时间为3min。 In order to obtain a better performance of resistive acetone gas sensor, based on micro process technology and electrochemical methods, PANI/Au/Al2O3 electrode is prepared and assembled. Three-phase polymerization is carried out with different current density. Use mixture experimental design method, preparation process of nanostructure of PANI/Au/Al2O3 electrode is optimized. Results show that the stability of PANI/Au/ Al2O3 electrode is the best when polymerization current density is fixed at 40,60 and 80μA/cm2, respectively, and the aggregate current density change from small to large. Maintaining polymerization charge at 35 mC, as three- phase charge ratio is 0.35 : 0. 33 : 0.32, the maximum sensor resistance rate of the 9 958× 10-6 acetone is 7.55 %. As the acetone gas concentration in the range of (475 - 1 189 ) ×10-6 and (23-118 ) × 10-6, corresponding sensitivities are 1.2 × 10 -3 and 6.4 × 10 -3 %/10 -6, and the average response time is 3 min.
出处 《传感器与微系统》 CSCD 2016年第9期66-68,共3页 Transducer and Microsystem Technologies
基金 台湾科学委员会项目(NSC101-2221-E-167-027-MY3) 四川省教育厅科研项目(15ZB0378) 成都大学校青年基金资助项目(2015XJZ02)
关键词 混合物实验设计法 气体传感器 丙酮 电极 选择性 mixture experimental design method gas sensor acetone electrode selectivity
  • 相关文献

参考文献9

  • 1Chen Y P, Yang G,Zhang Z H ,et al. Polyaniline-intercalated lay- ered vanadium oxide nanoeomposites-one-pot hydrothermal syn- thesis and application in lithium battery [ J ]. Nanoscale, 2010, 2 ( 10 ) :2131 -2138.
  • 2Khalid M,Aeuna j J S,Tumelcro M A,et al. Su|fonatedporphyrin- doped polyaniline nanotubes and nanofibcrs: Synthesis and cha- racterization [ J.~. J Mater Chem,2012,22 (22) : 11340 -11346.
  • 3Sadek A Z, Wlodarski W, Kalantar-Zadeh K ,el al. Doped and de- doped polyaniline nannfiber-based conductometric hydrogen gas sensors[ J]. Sensor and Actual A-Phys,2007,139 ( 1/2 ) :53 - 57.
  • 4Gong J,Li Y H, Hu Z S,et al. Uhrasensitive N H3 gas sensor from polyaniline nanograin enchased TiO2 Ebers[ Jj. J Phys Chem C, 2010,114(21 ) :9970 -9974.
  • 5Sarfraz J, Tabjork D, Osterbacka R, et al. lx~w-cost hydrogen sul- fide gas sensor on paper substrates: Fabrication and demonstra- tion [ J ]. IEEE Sens J ,2012,12 ( 6 ) : 1973 -1978.
  • 6Sambasevam K P,Mohamad S, Phang S W. Effect of dopant con- centration on polyaniIine for hydrazine detection [ J ]. Mat Sci Semicon Proc ,2015,330:27 -31.
  • 7Lu Y J,Partridge C, Meyyappan M,et al. A carbon nanotube sen- sor array for sensitive gas discrimination using principal compo- nent analysis[ J]. J Electroanal Chem, 2006,593 ( 1/2 ) : 105 - 110.
  • 8Rammla G V, Kumar P S, Srikanth V S S S, et al. Electrochemi- cally active polyaniline( PANi ) coaled carbon nanopipes and PANi nanofibers containing composite [ J ]. J Nanosei Nano Techno, 2015,15 (2) : 1338 -1343.
  • 9Krejci J, Sajdlova Z, Nedela V, et al. Effective surfaee area of eleetmchemical sensors[ J ]. J Electrochem Soc, 2014,161 ( 6 ) : 147 -150.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部