期刊文献+

光滑分段孪生支持向量机 被引量:1

Smooth piecewise twin support vector machine
下载PDF
导出
摘要 为了解决Sigmoid的积分函数对正号函数的逼近精度低的问题,引入一种具有更强逼近正号函数能力的光滑函数即分段函数,提出了光滑分段孪生支持向量机,并用快速Newton-Armijo算法对其求解。在NDC和UCI数据集上的实验结果表明:光滑分段孪生支持向量机能够有效地处理大规模和高维度数据,且分类精度和分类速度与光滑孪生支持向量机相比得到了改进。 To solve the problem of low approximation precision of integral function of sigmoid function, a piecewise function is introduced, which has stronger ability of smooth function of smooth piecewise function to approximate plus function. Smooth piecewise twin support vector machine (SVM)is proposed. Meanwhile, the fast Newton-Armijo algorithm is used to solved the smooth piecewise twin SVM. Experimental results on NDC and UCI datasets show that smooth piecewise twin SVM can effectively deal with large-scale and high-dimensional data, and classification precision and classification speed of smooth piecewise twin SVM are improved than smooth twin SVM.
出处 《传感器与微系统》 CSCD 2016年第9期130-132,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61100165) 陕西省自然科学基金资助项目(2014JM8313) 陕西省教育厅科学研究计划资助项目(2013JK1023)
关键词 光滑孪生支持向量机 光滑分段函数 Newton-Armijo算法 smooth twin support vector machine (STWSVM) smooth piecewise function Newton-Armijo algorithm
  • 相关文献

参考文献12

  • 1Jayadeva Khemchandni R, Chandra S. Twin support vector ma- chines for pattern classification [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (5) :905 -910.
  • 2Mangasarian O L. Wild E W. Multi-surface proximal support vec- tor machine classification via generalized eigenvalues [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1) :69-74.
  • 3Vapnik V. The nature of statistical learning theory [ M ]. New York : Springer ,2000.
  • 4Cong Hanhan, Yang Chengfu, Pu Xiaorong. Efficient speaker recognition based on multi-class twin support vector machines and GMMs[ C ]//J IEEE Conference on Robotics, Automation and Mechatronics ,2008:348 -352.
  • 5Zhang Xinsheng,Gao Xinbo,Wang Ying.TWIN SUPPORT TENSOR MACHINES FOR MCS DETECTION[J].Journal of Electronics(China),2009,26(3):318-325. 被引量:8
  • 6Zhang Xinsheng, Gao Xiaobo. MCS detection approach using bag- ging and boosting based twin support vectoe machine [ C ]J/Proc of the 2009 IEEE Int' 1 Conf on System, Man, and Cybernetics, Piscataway: IEEE,2009:5000 -5005.
  • 7Lee Y J, Mangasarian 0 L. SSVM:A smooth support vector ma- chine for classification [ J ]. Computationl Optimization and Appli- cation ,2001,22 ( 1 ) :5 -21.
  • 8Kumar M A, Gopal M. Application of smoothing technique on twin support vector machines [ J ]. Pattern Recognition Letters, 2008, 29 ( 13 ) : 1842 -1848.
  • 9Wu Qing. Piecewise-smooth support vector machine for classifica- tion [ J ]. Mathematical Problems in Engineering, 2013 (3) :2 - 9.
  • 10李广明,刘群锋.光滑支持向量机两种求解算法的比较[J].计算机应用,2009,29(6):1612-1614. 被引量:2

二级参考文献28

  • 1章云锋,王景成,史元浩.基于偏最小二乘支持向量机的燃煤电站锅炉效率模型[J].化工自动化及仪表,2012,39(11):1432-1436. 被引量:6
  • 2袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 3熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 4PLATT J C. Fast training of support vector machines using sequen- tial minimal optimization [ M]. Cambridge, MA: MIT Press, 1999: 185 - 208.
  • 5JONCHIMS T. Making large-scale support vector machine learning practical [M]. Cambridge, MA: MIT Press, 1999:169-184.
  • 6MANGASARIAN O L, MUSICANT D R. Successive overrelaxation for support vector machines [ J]. IEEE Transactions on Neural Networks, 1999, 10(8): 1032-1037.
  • 7LEE Y J, MANGASARIAN O L. SSVM: A smooth support vector machine for classification [ J]. Computational Optimization and Applications, 2001, 22(1): 5-21.
  • 8Dacheng Tao,Xuelong Li,Xindong Wu,Weiming Hu,Stephen J. Maybank.Supervised tensor learning[J].Knowledge and Information Systems.2007(1)
  • 9X. He,,D. Cai,,P. Niyogi.Tensor subspace analysis[].Nineteenth Annual Conference on Neural Information Processing Systems.2005
  • 10H. Lu,,K. N. Plataniotis,,A. N. Venetsanopoulos.MPCA: Multilinear principal component analysis of tensor objects[].IEEE Transactions on Neural Net- works.2008

共引文献18

同被引文献3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部