期刊文献+

基于三维彩色点云的物体识别算法 被引量:1

Object recognition algorithm based on 3D color point-cloud
下载PDF
导出
摘要 随着新一代深度传感器的出现,使用三维(3-D)数据成为物体识别研究的热点,而且提出了很多点云特征描述子。针对传统的采用点云形状特征描述子在目标描述方面的不足,提出了一种基于三维彩色点云的物体识别算法。首先提取点云数据的视点特征直方图(VFH)和颜色直方图(CH),然后对提取的形状特征和颜色特征分别通过支持向量机(SVM)进行预分类,最后将上述2个识别结果进行决策级融合。提出的算法在Washington RGB-D数据集进行训练和测试。结果表明,该方法与传统的采用点云形状特征描述子相比,其物体的正确识别率有了显著的提高。 With the advent of new-generation depth sensors, the three-dimensional (3-D) data is used frequently on the object recognition, then a lot of point cloud feature descriptors are put forward. Based on the traditional using point cloud shape feature descriptors are insufficient, an object recognition algorithm based on the 3D color point cloud is proposed. First, the viewpoints histogram (VFH) and color histogram (CH) of a certain point cloud data is extracted. Then, the support vector machine is used to presort the extracteA features respectively. Finally, the above two recognition results is fused using the decision level fusion. The proposed algorithm is tested on the Washington RGB-D dataset. Experiment results show that the algorithm can effectively improve the correct rate of object recognition.
出处 《电视技术》 北大核心 2016年第9期122-126,共5页 Video Engineering
基金 太原市科技项目人才专项基金项目(120247-28) 山西省研究生教育创新项目(2015BY23)
关键词 三维彩色点云 VFH 颜色直方图 特征融合 SVM 3D point cloud VFH color histogram feature fusion SVM
  • 相关文献

参考文献8

  • 1ALDOMA A, MARTON Z C, TOMBARI F, et al. Pointcloud library [ J ]. IEEE robotics & automation magazine. 2012,1070:9932.
  • 2RUSU R B, BLODOW N, MARTON Z C, el al. Aligning point eloud views using persistent feature histograms [ C ]// Proe. IEEE/RSJ lnternatiunal Conference on lntelligeqt Ro- bots aud Systems. [ S. 1. ] :IEEE, 2008:3384-3391.
  • 3RUSU R B, BRADSKI G, THIBAUX R, et al. Fast 3D recognition and pose using the viewpoint feature histogram [ C]//Proc. 2010 IEEE/RSJ lnlernational Conference on Intelligent Robots and Systems (1ROS). [ S. 1. ] : IEEE, 2010:2155-2162.
  • 4ALDOMA A, TOMBARI F, RUSU R B, et al. OUR- CVFH-oriented, unique and repeatable clustered viewpoint feature histogram for object recognition and 6DOF pose esti- mation[ M]//Pattern Recognition. Berlin: Springer, 2012 : 113-122.
  • 5WOHLKINGER W, VINCZE M. En~le of shape func- tions for 3D object classification[ C ]//Proc. IEEE Interna- tional Conference on Robotics and Biomimetic. [ S, 1. ] : IEEE,2011:2987-2992.
  • 6SALIH Y, MALI__K A S, WALTERN, etd. Noise robust- ness analysis of point, cloud descriptors [ C]//Prec. Ad- vanced Concepts fo~ Intelligent Vision Systems. [ S, I. ] : Springer International Publishing,~13:68-79.
  • 7K, Bo L, Ben X, et al. A large-scale hierarchical multi-view RGB-D object dataset[ C]//Proc. IEEE Inter- national Conference on Robotic and Automation. Shanlmi: IEg,2011 :1-8.
  • 8RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[ C ]//Proc. IEEE International Conference on Robotics and Automatiom [ S. 1. ] :IEEE,~3212-3217.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部