期刊文献+

基于网络资源的kNN网络流量分类模型的研究 被引量:4

A Study on Network Traffic Classification Model of kNN Based on Network Resources
下载PDF
导出
摘要 为了快速有效的识别网络流量中的攻击行为,根据同一类应用对网络资源的消耗具有相似性,不同类应用对网络资源的消耗具有差异性,提出了一种基于网络资源的kNN流量分类模型。该模型可以从多种网络资源中选取三种属性作为特征,采用改进的kNN算法进行流量检测,对网络中的各种流量特别是攻击类流量尽可能快速并有效的识别,给网络防御的启动提供重要依据。实验结果表明:改进的kNN算法在保证识别率的同时有效提高分类的速度。 With the substantial growth of network users and network applications,the attack behavior which is hidden in the traffic seriously affects the quality of network service.How to identify the network traffic quickly and effectively is one of the keys in network security.According to similarities in the consumption of the network resources by the same sort of applications,and the differences in the consumption of the network resources by different applications,this paper proposes a network traffic classification model of kNN based on network resources.The model can be used to select three attributes as its own feature from a variety of network resources,and it uses improved kNN algorithm to detect traffic.It can also identify all kinds of traffic in network as fast and effectively as possible,especially the attack traffic.It can be used as an important basis for the enablement of network defense.The experimental results show that the improved kNN algorithm can improve the speed of the classification effectively while ensuring the recognition rate.
出处 《湖北工业大学学报》 2016年第4期75-79,82,共6页 Journal of Hubei University of Technology
基金 湖北省教育厅科学研究计划资助项目(D2014403)
关键词 流量识别 KNN 网络资源 网络攻防 traffic classification kNN network resources network attack and defense
  • 相关文献

参考文献10

二级参考文献72

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2Williams N, Zander S, Armitage G.A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification[J].ACM SIGCOMM Computer Communication Review,2006,36(5) : 5-16.
  • 3Andrew W,Denis Z.Intemet traffic classification using Bayesian analysis techniques[C]//ACM International Conference on Mea- surement and Modeling of Computer Systems(SIGMETRICS), Banff, Alberta, Canada, 2005.
  • 4Livadas C, Walsh R, Lapsley D.Using machine learning techniques to identify Botnet traffic.[S.l.]:IEEE,2006:967-974.
  • 5Wang Rui,Liu Yang, Yang Yuexiang, et al.Solving the app-level classification problem of P2P traffic via optimized support vector machines[C]//ISDA' 06,2006: 534-539.
  • 6AZZOUNA N B, GUILLEMIN K Impact of peer-to-peer applications on wide area network traffic: an experimental approach[C]//Proc of IEEE Global Telecommunications Conference. Texas, USA: IEEE, 2004:1544-1548.
  • 7JUNG-TAE K, HAE-KYEONG P, EUI-HYUN P. Security issues in peer-to-peer systems[C]//The 7th International Conference on Advanced Communications Technology. Phoenix Park, USA: IEEE, 2005:1059-1063.
  • 8SEN S, WANG J. Analyzing peer-to-peer traffic across large networks[J]. IEEE Trans on Networking, 2004, 2(2): 219-232.
  • 9SEN S, SPATSCHECK O, WANG D. Accurate, scalable in-network identification of P2P trac using application signatures[C]//Proceedings of ACM WWW'04. New York, USA: ACM, 2004: 512-521.
  • 10KARAGIANNIS T, BROIDO A. Transport layer identification ofP2P traffic[C]//Proceedings of the 4th ACM SIC,-COMM Conference on Intemet Measurement. Sicily, Italy: ACM, 2004: 121-134.

共引文献56

同被引文献57

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部