期刊文献+

生物医用二级纯钛注射成形研究 被引量:4

Research on Powder Injection Molding of Grade 2 CP-Titanium for Biomedical Application
下载PDF
导出
摘要 随着医疗产品市场对生物医用材料需求量的不断增加,比强度高、弹性模量低、耐腐蚀,生物相容性好的钛和钛合金受到人们越来越多的关注。相对于传统的机加工和模压加工工艺,金属粉末注射成形能够实现产品的低成本、大批量近净成形,有效的提高材料利用率,扩大了钛和钛合金的应用范围。本文利用水溶性注射料体系和商用球形钛粉制备了注射料,并进行了力学性能试样的制备,通过优化烧结工艺参数,制得烧结试样的物理力学性能如下:氧含量0.228%,氮含量0.015%,屈服强度443 MPa,极限拉伸强度554MPa,延伸率20.9%,相对密度96.9%。试样整体性能满足ASTM F2989-13外科植入用金属注射成形纯钛部件标准。 With the increasing demand for biomedical materials, titanium and titanium alloys are becoming increasingly attractive because of their high specific strength, low elastic modulus, good corrosion resistance and fantastic bio-compatibility. Compared with traditional machining and mold processing technology, MIM appears to be ideal for the processing of titanium parts ( even highly complex structures), as typical advantages are high material utilization and low production costs in large-quantity manufacturing. In this study, water soluble binder and commercial spherical titanium powder were employed for the injection molding of the mechanics performance samples. Through the sintering parameters optimization, samples with relative density of 96.9% , oxygen content of 0. 228% , nitrogen content of 0. 015% , yield strength of 403 MPa and plastic elongation of 20. 9% were obtained. These properties (except the relative density) meet the requirements of ASTM F2989-13 for grade 2 pure titanium.
出处 《粉末冶金技术》 CAS CSCD 北大核心 2016年第4期281-284,290,共5页 Powder Metallurgy Technology
基金 国家国际科技合作专项(No.2014DFA50220)
关键词 生物医用材料 金属注射成形 二级纯钛 Biomedical materials metal injection molding grade 2 pure titanium
  • 相关文献

参考文献6

二级参考文献94

  • 1刘广文.气流冲击式粉体表面改性装置[J].化工装备技术,1995,16(4):47-50. 被引量:1
  • 2Niinomi M., Titanium alloys for medical and dental applications, [in] Medical Device Materials-Proceedings of the Materials and Processes for Medical Devices Conference, Princeton, 2003: 417.
  • 3Froes F.H. and Nylon D.E., Powder metallurgy of titanium alloys, Int. Mater. Rev., 1990, 35: 162.
  • 4Froes F.H., Getting better: big boost for titanium MIM prospects, Met. Powder Rep., 2006, 61 (11): 20.
  • 5Arcella F. and Froes F.H., Production of titanium aerospace components from powder using laser forming, J. Mater., 2000, 52 (5): 28.
  • 6Thian E.S., Loh N.H., and Khor K.A., Ti-6A1-4V/HA composite feedstock for injection molding, Mater. Lett., 2002, 56 (4): 522.
  • 7Kim K.H., Youn H.C., Choi C.J. and Lee B.T., Fabrication and material properties of powder injection molded Fe sintered bodies using nano Fe powder, Mater. Lett., 2007, 61 (4-5): 1218.
  • 8Gulsoy O.H. and Karatas C., Development of poly(2-ethyl-2- oxaline) based water-soluble binder for injection molding of stainless steel powder, Mater. Des., 2007, 28 (9): 2488.
  • 9Gulsoy O.H. and German R.M., Production of micro-porous austenitic stainless steel by powder injection molding, Scripta Mater., 2008, 58 (4): 295.
  • 10Zeep B., Norajitra P., Hotter V., Boehm J., Ruprecht R., and Hausselt J., Net shaping of tungsten components by micro powder injection moulding, Fusion Eng. Des., 2007, 82 (15-24): 2660.

共引文献112

同被引文献27

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部