期刊文献+

基于支持向量机的外骨骼机器人灵敏度放大控制 被引量:2

Support Vector Machine Based Sensitivity Amplification Control for a Lower Extremity Exoskeleton
下载PDF
导出
摘要 为了准确控制外骨骼机器人跟随人体运动,需要建立其动态、精确的数学模型;人体下肢外骨骼是一个多自由度、强耦合以及非线性的多连杆系统,难以建立准确的运动学和动力学模型;文章使用三维运动捕捉与空间定位系统,获取实际人体运动参数(运动学与动力学),应用支持向量机(SVM)学习人体下肢外骨骼的数学模型;基于该模型构造基于支持向量机模型的灵敏度放大控制方法;文章使用MATLAB和LIBSVM建立外骨骼下肢机器人的数学模型,并进行仿真分析;仿真结果表明基于SVM的模型学习方法,能够准确计算出人体下肢外骨骼的动力学模型,并简化建模过程;基于SVM的灵敏度放大控制,能够有效计算出人体下肢外骨骼各关节(髋关节、膝关节、踝关节)的输出力矩,并控制外骨骼机器人跟随人体运动。 In order to accurately control the exoskeleton robot to follow the human movements,it is needed to establish a dynamic and accurate mathematical model.The human lower extremity exoskeleton is a multiple degrees of freedom,strong coupling and nonlinear multi-link system,it is difficult to establish an accurate kinematic and dynamic models.We use three-dimensional motion capture and spatial positioning system,to get the actual human motion parameters(kinematics and dynamics),use support vector machine(SVM)to learn mathematical model of human lower extremity exoskeleton.Using the model we constructed the control method of support vector machine based sensitivity amplification.Using MATLAB and LIBSVM to build the model,simulation results show that the learning method based on SVM model will be able to accurately calculate the dynamic model of the human lower extremity exoskeleton,and simplify the modeling process;SVM based sensitivity amplification control,can effectively calculate the output torque of the human lower limb skeletal joints(hip,knee and ankle joints),and control the exoskeleton robot follow the movement of the human body.
出处 《计算机测量与控制》 2016年第9期211-214,共4页 Computer Measurement &Control
关键词 外骨骼 支持向量机 灵敏度放大控制 exoskeleton support vector machine sensitivity amplification control
  • 相关文献

参考文献3

二级参考文献38

  • 1邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743. 被引量:128
  • 2Yang Canjun, Niu Bin, Chen Ying. Adaptive neuro -fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation[ C]. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey,California, USA, July, 2005. 24 - 28.
  • 3Adam B Zoss, H Kazerooni and Andrew Chu. Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX) [ J ]. IEEE/ASME Transactions on Mechatronics, April, 2006, 11 (2).
  • 4M Vukobratovic, V Cific and D Hristic. Contribution to the study of active exoskeletons [C]. Proceedings of the 5th International Federation of Automatic Control Congress, Paris, 1972.
  • 5J Okamura, H Tanaka and Y Sankai. EMG - based prototype powered assistive system for walking aid[ C]. In Proc. Asian Symposium on Industrial Automation and Robotics ( ASIAR' 99 ), Bangkok, Thailand, 1999. 229-234.
  • 6S Lee and Y Sankai. Power assist control for walking aid with HAL - 3 based on EMG and impedance adjustment around knee joint [ C]. In Proc. Of IEEE/RSJ International Conf on Intelligent Robots and Systems ( IROS 2002), EPFL, Switzerland, 2002. 1499 - 1504.
  • 7Hiroaki Kawamoto and Yoshiyuki Sankai. Power assist system HAL - 3 for gait disorder person[ C]. K Miesenberger, J Klaus, W Zagler (Eds.): ICCHP 2002, LNCS 2398, 2002. 196-203.
  • 8J F Veneman, R Ekkelenkamp, R Kruidhof, F C T van der helm, H van der Kooij. Design of a series elastic - and Bowden cable - based actuation system for use as torque - actuator in exoskeleton - type training[ C]. Proceedings of the 9th International Conference on Rehabilitation Robotics, June 28 - July 1, Chicago, IL, USA, 2005.
  • 9Camilo Acosta - Marquez and David A Bradley. The analysis, design and implementation of a model of exoskeleton to support mobility[ C]. Proceedings of the 9th International Conference on Rehabilitation Robotics, June 28 - July 1, Chicago, IL, USA, 2005.
  • 10Neil J Mizen. Preliminary design of a full - scale, wearable, exoskeleton structure [ R ]. Cornell Aeronautical Laboratory, AD - A058716, 1963.

共引文献12

同被引文献19

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部