期刊文献+

多用户MIMO系统中基于博弈论的鲁棒性功率分配

Robust Power Allocation Based on Game Theory for Multi-user MIMO Systems
下载PDF
导出
摘要 针对多用户多输入多输出(MU-MIMO)天线系统,提出了一种基于非合作博弈论的功率分配方案。此博弈模型中,以用户在系统中的信号泄漏噪声比值(SLNR)作为用户功率分配和公平性参数设置的依据,保证用户所期望的服务质量和公平性,并证明了纳什均衡的存在性。其次,考虑信道估计误差的影响,提出了一种基于滑动模型的迭代功率分配控制算法满足所有用户的最小通信质量要求。仿真结果显示此方案在信道误差的情况下,相比现有方案可提高系统吞吐量。 This paper presents a power allocation scheme based on non-cooperative Game theory for multi-user multi-input multi - output ( MU - MIMO ) antenna systems. The game scheme uses the signal-to- leakage-and-noise ratio ( SLNR) of users in the system as a guide of power allocation and fairness parame-ter setting,furthermore establishes a game model to ensure users, Quality of Service ( QoS) and fairness,as well as proves the existence of Nash equilibrium( NE). Secondly,considering the influence of channel esti-mation error,it proposes an iterative algorithm based on sliding model to update allocated power in order to meet the minimum QoS requirements among all users. Simulation results show that the scheme can improve the system throughput compared with the existing schemes in the presence of channel error.
作者 董作霖
出处 《电讯技术》 北大核心 2016年第9期1017-1022,共6页 Telecommunication Engineering
关键词 多用户多输入多输出 功率分配 博弈论 信号泄漏噪声比 纳什均衡 MU-MIMO power allocation game theory signal-to-leakage-and-noise ratio Nash equilibrium
  • 相关文献

参考文献6

二级参考文献63

  • 1Tarokh V, Seshadri N, Calderbank A R. Space time codes for high data rate wireless communication: Perfommnce criterion and code construction[J]. IEEE Transactions on Information Theory, 1998, 44(2) : 744 765.
  • 2Dohler M, Mclanghlin S, Lanrenson D, et al. Implementable wireless access for B3G networks I: MIMO channel measurement, analysis and modeling [ J ]. IEEE Communications Magazine,2007, 45(3) : 85 92.
  • 3D, Kountouris M, Heath R W, et al. From single user to muhiuser conmamications: shiftirg the MIMO paradigm[J].IEEE, signal. Processing Magazine,2007,24(5):3646.
  • 4Costa M. Writing on dirty paper[ J ]. IEEE Transactions on Information Theory, 1983, 29(3) : 439 441.
  • 5Spencer Q H,Sndlehurst A L, Haardt M.Zero forcing for downlink spatial mtdfiplexing in mnlfiuser MIMO channels[J]. IEEE Transactions on Signal Processing,2304,52(2):d61-471.
  • 6Meyer C D. Matrix analysis and applied linear algebra: solutions manual[ M ]. Philadelphia: Society for Industrial and Applied Mathematics, 2001.
  • 7Sampath H, Stoica P, Paulraj A. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[J]. IEEE Transactions on Communications, 2001, 49(12) : 2198 2206.
  • 8Facilitating Opportunities for Flexible, Efficient, and Reliable Speclrum Use Employing Cognitive Radio Technologies, No- tice of Proposed Rule Making and Order [ R]. FCC 03-322Federal Communications Commission, 2003. http.//transition. fcc. gov/Document _ Indexes/Engineering_ Technology/2003 _ index _ OE'r _ Notice. htnal.
  • 9Haykin S. Cognitive radio: brain-empowered wireless communi- cations[J].IEEE Journals on Selected Areas in Communica- tions, 2005,23 (2) : 201 - 220.
  • 10Zhang R,Liang Y C. Exploiting multi-antennas for opportunis- tic specmun sharing in cognitive radio networks[ J]. IEEF. Journal of Selected Topics in Signal Processing, 2008,2 ( 1 ) : 88 - 102.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部