期刊文献+

液压与非液压成型钛合金的显微组织及性能研究

Research on Microstructure and Properties of Titanium Alloy by Hydraulic and Non-hydraulic Forming
原文传递
导出
摘要 电磁脉冲是一种不同于液压的新型成型方式,具有较好的应用潜力。TA15钛合金管件分别经常规液压或电磁脉冲成型。成型钛合金的显微组织、力学性能和耐磨损性能的测试与分析表明:电磁脉冲成型钛合金晶粒较液压成型更细,合金力学性能和耐磨损性能更佳。与常规液压相比,电磁脉冲成型钛合金400℃抗拉强度增加57.48%、400℃断后伸长率增加34.24%、-20℃冲击功增加74.22%、400℃磨损体积减小57%。 Electromagnetic pulse shaping is a new type forming, which has a good application prospect. TA15 formed by hydraulic and electromagnetic pulse methods, of method compared with the normal hydraulic titanium alloy tube samples were respectively and the microstructures, mechanical properties and wear resistances of the formed samples were tested and analyzed. The results show that compared with that of hydraulic forming sample the grain size of titanium alloy formed by electromagnetic pulse sha- ping is smaller, with better mechanical properties and wear resistance. By comparison with normal hy- draulic forming, the tensile strength and elongation after fracture at 400 ℃ for the alloy by electromagnet- ic pulse shaping respectively increase by 57.48% and 34.24%, and its impact energy at -20 ℃ increa- ses by 74.22% with wear volume at 400 ℃ decreased by 57%.
作者 王俊洲
出处 《钢铁钒钛》 CAS 北大核心 2016年第4期48-52,68,共6页 Iron Steel Vanadium Titanium
基金 重庆市科技计划项目(CSTC2011GJHZ50001)
关键词 钛合金 液压成型 电磁脉冲成型 力学性能 耐磨损性能 titanium alloy, hydraulic forming, electromagnetic pulse shaping, mechanical properties, wear resistance
  • 相关文献

参考文献9

二级参考文献59

  • 1杨兵,张卫刚,林忠钦,李淑慧.管件液压成形技术在汽车制造中的应用研究[J].机械设计与研究,2004,20(5):65-67. 被引量:12
  • 2杨修荣.超薄板的MIG/MAG焊——CMT冷金属过渡技术[J].石油化工建设,2006,28(2):37-39. 被引量:5
  • 3LI Qiu-shu,LI Hai-bin,ZHAI Qi-jie.Structure Evolution and Solidification Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field[J].Journal of Iron and Steel Research(International),2006,13(5):69-72. 被引量:12
  • 4Ben-Artzy A, Stem A, Frage N, et al. Wave formation mechanism in magnetic pulse welding [J]. International Journal of Impact Engineering, 2009, 37(4): 397-404.
  • 5Bahrani A S, Black T J, Crossland B. The mechanics of wave formation in explosive welding [J]. Proceedings of the Royal Society of London-Series A, 1966, 296:123 - 142.
  • 6Cowan G R, Bergman O R, Hohzman A H. Mechanism of bond zone wave formation in explosion-clad metals [J]. Metallurgical and Materials Transactions B. 1971, 2(11):3145-3157.
  • 7Robinson J L. Fluid A. Model of impact welding [J]. Philosophical Magazine, 1975, 31(1): 587-603.
  • 8EI-Sobky H, Blazynski T Z. Experimental investigation of the mechanics of explosive welding by means of a liquid analogue[C]. Proceedings of the Fifth International Conference on High Energy Rate Fabrication. Colorado, USA, 1975.
  • 9Mousavi S A A A, Sartangi P F. Experimental Investigation of explosive welding of Cp-titanium/AISI 304 Stainless steel [J]. Materials and Design, 2009, 30: 459-468.
  • 10Waymond S J, Christoph S, Kangwook K, et al. Detection of land mines using elastic and electromagnetic waves [C]. 139th Acoustical Society of America Meeting. Atlanta, Georgia, 2000.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部