摘要
最大优先级指标(MPI)选题策略可以较好地满足非统计性约束,按a分层的选题策略可以有效提高低区分度项目的利用率,结合两者的优势,构造了附加区分度约束的两阶段MPI选题策略.Monte Carlo模拟研究表明:新选题策略在题库的未使用率方面有明显改进,在测量精度和约束条件控制等评价指标上较现有方法差异不大.
MPI can well meet the statistical constraints,and a-stratified method can effectively improve the utilization rate of low discrimination item. Combining the advantages of MPI and a-stratified method,a two-phase MPI item selection strategy with additional distinction constraint is constructed. The simulation study of Monte Carlo shows that the new item selection strategy has improved a lot in the inavailability of item bank,which is about the same as the existing approach in measurement accuracy,constraint management and other evaluation in dices.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2016年第4期377-381,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(31500909
31360237
31300876
31160203
31100756
30860084)
教育部人文社会科学研究青年基金(13YJC880060)
江西省教育科学2013年度一般课题(13YB032)资助项目
关键词
非统计约束
选题策略
a分层
最大优先级指标方法
the statistical constraints
item selection strategy
a-stratified method
maximum priority index method