期刊文献+

吩嗪-铝复合物体系输运性质的第一性原理研究(英文)

First-principles research of the transport properties of phenazine-aluminium complex
下载PDF
导出
摘要 采用密度泛函理论与非平衡格林函数相结合的第一性原理,对由吩嗪分子和单个铝原子构成的复合体系的电荷输运性质进行研究.计算模型是由吩嗪-铝复合物与两个无穷长的Al(100)纳米线电极构成.研究结果表明:在没有施加偏压的平衡状态下该体系在费米能级附近具有良好的电荷透射性能,而在施加偏压的非平衡状态下该体系有负微分电阻效应.结合透射谱及投影态密度,对其输运性质进行了理论解释.从该研究结果可知这类吩嗪-铝复合物在将来的分子尺度器件中具有潜在的应用价值. Via first-principles calculation technique based on the combination of density functional theory with non-equilibrium Green's function formalism, the transport properties of the phenazine-aluminium complex were probed in the current paper. In our theoretical investigations, the calculation model was composed of the Al-based complex being coupled with two atomic scale A1(100) nanowire electrodes. Our calculations indicated that such an Al-based complex displayed good transmission around the Fermi level in equilibrium. Moreover, it exhibited negative differential resistance effect when voltages were applied. All these results were analyzed via the transmission spectra and projected density of states. Our theoretical calculations suggested that such an Al-based complex would be one potential candidate for the future molecular-scale devices.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2016年第5期37-44,共8页 Journal of Anhui University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(11204001,11174004) Anhui Provincial Natural Science Foundation(2013KJS030026,1208085QA07,1308085MA04) the Higher Educational Natural Science Foundation of Anhui Province(2013KJT010021,KJ2013A031) Anhui University Scientific Research Fund(KYXL2012017,KYXL2013009,201410357005) "211 Project"of Anhui University(SZJYKC2013020,KYX12013009)
关键词 电荷输运 第一性原理 铝基复合物 负微分电阻 electronic transport first-principles M-based complex negative differential resistance
  • 相关文献

参考文献18

  • 1JOACHIM C, GIMZEWSKI J K, AVIRAM A. Electronics using hybrid molecular and mono-molecular devices[J]. Nature, 2000, 408~ 541-548.
  • 2LAMBERT C J. Basic concepts of quantum inter{erence and electron transport in single-molecule electronics [J]. Chem Soc Rev, 2015, 44: 87S 888.
  • 3ZHAO J, ZENG C G, CHENG X, et al. Single C~N molecule as a molecular rectifier[J]. Phys Rev Lett,2005, 95.. 045502-045505.
  • 4KIM W Y, CHOI Y C, MIN S K, et al. Application of quantum chemistry to nanotechnology., electron and spin transport in molecular devices[J]. Chem Soc Rev, 2009, 38:2319 2333.
  • 5ZHAO P, WANG P J, ZHANG Z, et al. Negative differential resistance in a carbon nanotube~based molecular junction[J]. Phys I.ett A, 2010, 374: 1167-1171.
  • 6NITZAN A, RATNER M A. Electron transport in molecular wire junetions[J]. Science, 2003, 300: 1384-1389.
  • 7I.IU H M, ZHAO J W, BOEYB F, et al. Asymmetric electron transport realized by decoupling between molecule and eleetrode~J2. Phys Chem Chem Phys, 2009, 11.. 10323-10330.
  • 8ALBRECHT F, NEU M, QUEST C, et al. Formation and characterization of a molecule-metal-molecule bridge in real spaeeEJ2. J Am Chem Soc, 2013, 135:9200 9203.
  • 9BAI.LESTEROS L M, MARTIN S, MARQUES-GONZALEZ S, et al. Single gold atom containing oligo (phenylene) ethynylene: assembly into LB films and electrical eharaeterizationFJ2. J Phys Chem C, 2015, 1.. 784-793.
  • 10PIERRET A, BOUGEROL C, GAYRAL B, et al. Probing alloy composition gradient and nanomete~scale carrier localization in single A1GaN nanowires by nanocathodolumineseence[J]. Nanotechnology, 2013, 30: 305703-305708.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部