期刊文献+

低带宽广域网环境下的一致性算法研究 被引量:1

Research on Consensus Algorithm in Low-bandwidth Wide Area Networks
下载PDF
导出
摘要 基于消息传递机制的Paxos算法在执行过程中需要进行大量网络通信,应用于广域网环境时易受带宽的限制而影响算法效率。为此,对Paxos的通信模型进行优化,提出改进的W-Paxos算法。通过在每个数据中心内部增设代理节点来接收、处理和发送广域网消息,从而大幅减少广域网消息数量,解决因Paxos消息过多而引发的网络拥塞、延迟增加等问题。由于仅对经典Paxos的通信模型进行优化,因此改进算法适用于多数Paxos协议族中的协议。实验结果表明,在低带宽环境下,W-Paxos产生的消息数量较Mencius和EPaxos算法更少,能有效减缓领导者的负载压力,提高吞吐率并降低通信延迟。 Paxos algorithm based on message passing mechanism incurs a large amount of communication during execution. When applied to Wide Area Networks(WAN) environment,it is vulnerable to the limit of bandwidth, which affects the efficiency of the algorithm. Aiming at this problem, this paper optimizes the communication model of Paxos and presents an improved algorithm,which is named W-Paxos. It sets a proxy node in each data center for forwarding, disposing and sending WAN messages to reduce the messages in WAN massively so as to avoid network congestion and increasing delay. Since W-Paxos only optimizes the communication model without changing other parts of the protocol,it is applicable to almost all Paxos-based protocols. Experimental results show that, compared with Mencius and EPaxos algorithms,W-Paxos generates fewer messages,therefore it can retard the workload of the consensus leaders,increase the throughtput and reduce the communication delay.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第9期94-99,104,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61100020) 华为公司创新研究计划基金资助项目
关键词 一致性 Paxos算法 W—Paxos算法 分布式系统 代理 consensus Paxos algorithm W-Paxos algorithm distributed system proxy
  • 相关文献

参考文献16

  • 1罗军舟,金嘉晖,宋爱波,东方.云计算:体系架构与关键技术[J].通信学报,2011,32(7):3-21. 被引量:826
  • 2陈全,邓倩妮.云计算及其关键技术[J].计算机应用,2009,29(9):2562-2567. 被引量:932
  • 3Lamport L. Paxos Made Simple ~ Jl. ACM SIGACT News ,2001,32(4) . 18-25.
  • 4Lamport L. The Part-time Parliament I J ~ ~ ACM Tran- sactions on Computer Systems, 1998,16(2) ~133-169.
  • 5许子灿,吴荣泉.基于消息传递的Paxos算法研究[J].计算机工程,2011,37(21):287-290. 被引量:10
  • 6Rao J, Shekita E J, Tata S Scalable, Consistent, and store~ J~. Proceedings of the Using Paxos to Build a Highly Available Data- VLDB Endowment, 2011, 4(4) :243-254.
  • 7Chandra T D, Griesemer R, Redstone J. Paxos Made Live: An Engineering Perspective ~ C ]//Proceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing. New York, USA: ACM Press, 2007:398-407.
  • 8Lamport L. Fast Paxos [ J 1. Distributed Computing, 2006,19(2) :79-103.
  • 9Lamport L, Massa M. Cheap Paxos ~ C ]//Proceedings of 2004 International Conference on Dependable Systems and Networks. Washington D. C, USA: IEEE Press, 2004:307-314.
  • 10Mao Yanhua, Junqueira F P, Marzullo K, Mencius:Building Efficient Replicated State Machines for WANs[C~//Proceedings of the 8th Symposium on Operating Systems Design and Implementation. Berkeley, USA : USENIX Association,2008 ~369-384.

二级参考文献144

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献2971

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部