期刊文献+

一类矩阵方程对称解的可信误差界

Verified Error Bounds for a Symmetric Solution of Matrix Equation
下载PDF
导出
摘要 利用区间分析理论,研究了矩阵方程AXB+BXA=C对称解的可信验证.提出了一种算法,该算法输出一个近似对称解及其相应的可信误差界,使得在近似解的误差范围内必定存在该方程的一个精确对称解. The verified error bound for symmetric solutions of matrix equation AXB+BXA = C is studied. Using the interval analysis theory, we present an algorithm to compute an approximate solution and its narrow error bound that an exact solution exists within this computed bounds.
出处 《北华大学学报(自然科学版)》 CAS 2016年第5期581-584,共4页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(11171133) 吉林省教育厅科学技术研究项目(2015131 2015156)
关键词 可信误差界 矩阵方程 对称解 INTLAB verified error bound matrix equation symmetric solution INTLAB
  • 相关文献

参考文献8

  • 1Essex C, Davison M, Schulzky C. Numerical monsters [ J ]. ACM SIGSAM Bulletin, 2000,34 (4) : 16-32.
  • 2R A Horn, C R Johnson. Topics in matrix analysis [ M ]. Cambridge : Cambridge University Press, 1994.
  • 3Rump S M. INTLAB-interval laboratory//developments in reliable computing [ M ]. Dordrecht: Kluwer Academic Publishers, 1999 : 77-104.
  • 4Frommer A, Hashemi B. Verified error bounds for solutions of Sylvester matrix equations [ J ]. Linear Algebra and Its Applications,2012,436 (2) :405-420.
  • 5Sang H, Li Z, Cui Y, et al. A verified algorithm for the centrosymmetric solution of Sylvester matrix equations [ M ]. Berlin Heidelberg: Springer, 2015 : 342 -349.
  • 6Rump S M. Verification methods:Rigorous results using floating-point arithmetic [ J ]. Acta Numerica,2010,19:287-449.
  • 7Rump S M. Kleine fehlerschranken bei matrixproblemenL D J. Karlsruhe: Universitat Karlsruhe, 1980.
  • 8周海林.矩阵方程AXB+CXD=F对称解的迭代算法[J].计算数学,2010,32(4):413-422. 被引量:10

二级参考文献7

  • 1Roger A Horn,Charles R.Johnson.Topics in Matrix Analysis[M].北京:人民邮电出版社,2005,241-242.
  • 2Gene H Golub,Charles F Van Loan.Matrix Computations[M].Baltimore:The Johns Hpkins University Press,1996,53-644.
  • 3Charles F Van Loan.Generalizing the singular value decomposition[J].SIAM J.Numer Anal.,1976,(13):76-83.
  • 4Moody T Chu,Robert E Funderlic,Gene H Golub.On a variational formulation of the generalized singular value decomposition[J].SIAM J.Matrix Anal.Appl.,1997,(18):1082-1092.
  • 5Gene H Golub,Zha Hongyuan.Perturbation analysis of the canonical correlations of marix pairs[J].Linear Algebra Appl.,1994,(210):3-28.
  • 6Peng Zhenyun,Peng Yaxin.An efficient iterative method for solving the matrix equation A×B+CYD=E[J].Numer Linear Algebra Appl.,2006,(13):473-485.
  • 7Wang Minghui,Cheng Xuehan,Wei Musheng.Iterative algorithms for solving the matrix equation A×B+CXTD=E[J].Appl.Math.Comput.,187(2):622-629.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部