期刊文献+

局部遮挡条件下的人脸表情识别 被引量:1

FACIAL EXPRESSION RECOGNITION UNDER PARTIAL OCCLUSION
下载PDF
导出
摘要 针对局部遮挡条件下的人脸表情识别,提出一种新的基于Gabor滤波和灰度共生矩阵的表情识别算法。首先设计一种分块提取Gabor特征统计量的方法,生成一个低维Gabor特征向量;然后,考虑到分块的Gabor特征缺失了像素之间的关联性,将反映像素间位置分布特性的灰度共生矩阵引入到表情识别领域,以此来弥补Gabor特征分块处理产生的不足;最后,将提取的低维Gabor特征向量和灰度共生矩阵纹理特征进行线性叠加,高斯归一化后生成一组用于特征表达的低维特征向量。在日本女性人脸表情库和荷兰内梅亨大学人脸数据库上的实验证明该算法对人脸不同区域、不同程度遮挡的表情识别具有鲁棒性强、特征向量维数低、分类耗时短、识别速率高的特点。 We propose a novel facial expression recognition method, which is based on Gabor filter and gray-level co-occurrence matrix, aimed at facial expression recognition under partial occlusion condition. We first design an approach to extract in blocks the Gabor feature statistics, which generates a low-dimensional Gabor feature vector. Then, taking into account the lack of association between pixels in blocked Gabor features, we introduce the gray-level co-occurrence matrix reflecting the distribution characteristics between locations of pixels into expression recognition field, so as to make up the deficiency caused by Gabor feature blocking processing. Finally, we apply the linear superimposition on the extracted low-dimensional Gabor feature vector and the texture feature of gray-level co-occurrence matrix, after Gaussian normalisation processing there generates a set of low-dimensional feature vectors for feature representation. Experiments have been made on JAFFE and RaFD, they prove that the algorithm has the characteristics of high robustness, low dimension of feature vectors, short classification time and better recognition rates on facial expression recognition in different regions and with different occlusion degrees.
出处 《计算机应用与软件》 CSCD 2016年第9期147-150,175,共5页 Computer Applications and Software
基金 国家科技支撑计划项目(2011BAC12B03) 北京市博士后工作经费项目
关键词 人脸表情识别 局部遮挡 Gabor滤波灰度共生矩阵 高斯归一化 Facial expression recognition Partial occlusion Gabor filter Gray-level co-occurrence matrix Gaussian normalisation
  • 相关文献

参考文献10

  • 1刘帅师.非均匀光照和局部遮挡情况下的鲁棒表情识别理论与方法研究[D].长春:吉林大学,2012.
  • 2Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10) :1615 - 1630.
  • 3Zhang L G. Towards spontaneous facial expression recognition in real- world video[ D]. Brisbane, Queensland, Australia: Queensland Univer- sity of Technology,2012.
  • 4Azmi R, Yegane S. Facial expression recognition in the presence of oc- clusion using local gabor binary patterns [ C ]//Proceedings of the 20th Iranian Conference on Electrical Engineering, May 15 -17,2012, Teh- ran, Iran. Miami : Curran Associates, Inc. :742 - 747.
  • 5Liu S, Zhang Y, Liu K, et al. Facial expression recognition under partial occlusion based on gabor multi-orientation features fusion and local ga- bor binary pattern histogram sequence [ C ]//The Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, August 27 - 29,2014,.Kitakyushu, Japan. Los Alamitos : IEEE Computer Society :218 - 222.
  • 6Lyons M,Akamatsu S, Kamachi M, et al. Coding facial expressions with gabor wavelets[ C]//Proceedings of the Third IEEE International Con- ference on Automatic Face and Gesture Recognition, April 14 -16, 1998, Nara, Japan. Los Alamitos :IEEE Computer Society :200 - 205.
  • 7Langner O, Dotsch R, Bijlstra G, et al. Presentation and validation of the Radboud faces database[J]. Cognition & Emotion,2010,24(8 ) : 1377 - 1388.
  • 8张李秋.一种基于纹理特征的图像检索方法[D].成都:电子科技大学,2012.
  • 9Shih F Y,Chuang C. Automatic extraction of head and face boundaries and facial features [ J ]. Information Sciences, 2004, 158 ( 1 ) : 117 - 130.
  • 10Ulaby F T, Kouyate F, Brisco B,et al. Textural infi~rmation in SAR ima- ges[ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2) :235 -245.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部