期刊文献+

一种改进的深度置信网络及其在自然图像分类中的应用 被引量:8

AN IMPROVED DEEP BELIEF NETWORK AND ITS APPLICATION IN NATURAL IMAGE CLASSIFICATION
下载PDF
导出
摘要 深度置信网络DBN(deep belief network)由受限玻尔兹曼机RBM(restricted Boltzmann machine)堆叠而成。针对RBM只能接受二值输入而导致的信息丢失问题,给出将可视层节点替换为具有高斯噪音的实数节点的解决方法,并且用线性修正节点替代隐层的Sigmoid节点。线性修正单元具有良好的稀疏性,可以很好地提高网络性能。DBN自底向上逐层训练网络,初始化网络的参数。在自然图像数据库中与传统DBN以及BP神经网络做分类性能比较,实验结果表明,改进的DBN的图像平均分类正确率以及时间复杂度都得到了较好的改善。 DBN (deep belief network) is stacked by RBM (restricted Boltzmann machine). RBM can only accept two-valued input,which causes the problem of information loss. Aiming at this problem, we solve it by replacing the visual layer nodes with real number nodes contai- ning Gauss noise, and use rectified linear nodes instead of hidden layer Sigmoid node. Rectified linear unit has good sparsity, and can well enhance network performance. DBN uses bottom- up method to train network layer by layer, and initialises network parameters. Comparison of classification performance between traditional DBN and BP neural network is conducted on nature image datasets. Experimental result indicates that in improved DBN the average classification accuracy of images and the time complexity are both improved significantly.
出处 《计算机应用与软件》 CSCD 2016年第9期221-223,244,共4页 Computer Applications and Software
关键词 深度置信网络 受限玻尔兹曼机 线性修正单元 Deep belief network Restricted Boltzmann machines Rectified linear unit
  • 相关文献

参考文献16

  • 1SimonHaykin.神经网络原理[M].叶世伟,史忠植,译.北京:机械工业出版社,2004.
  • 2刘建伟,刘媛,罗雄麟.玻尔兹曼机研究进展[J].计算机研究与发展,2014,51(1):1-16. 被引量:71
  • 3Hinton G E, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets [ J]. Neural Computation ,2006,18 (7) : 1527 - 1554.
  • 4孙劲光,蒋金叶,孟祥福,李秀娟.深度置信网络在垃圾邮件过滤中的应用[J].计算机应用,2014,34(4):1122-1125. 被引量:14
  • 5Nair V,Hinton G E. Rectfied Linear Units Improve Restricted Bohz- mann Machines [ C l//Pmeeedings of the 27th International Confer- ence on Machine Learning. Toronto: University of Toronto, 2010:807 -814.
  • 6Glomt X, Bordes A, Bengion Y. Deep Sparse Rectifier Neural Networks [C]//Proeec~lings of the 14th International Conference on Artificial ntelligenee and Statistics ( AISTATS). USA: W&CP 15,2011,15:315 - 323.
  • 7刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,31(7):1921-1930. 被引量:291
  • 8Zeiler M D, Ranzato M, Monga R, et al. On rectified linear units for speech processing [ C ]//Acoustics, Speech and Signal Processing ( IC- ASSP) ,2013 IEEE International Conference on. Vancouver, BC :2013: 3517 -3521.
  • 9Plahl C,Sainath T N, Ramabhadran B, et al. Improved pre-training of Deep Belief Networks using Sparse Encoding Symmetric Machines [ C]//2012 IEEE International Conference on Acoustics,Speech and Signal Processing ( ICASSP). Kyoto: IEEE, 2012:4165 - 4168.
  • 10Gavrilescu M. Proposed architecture of a fully integrated modular neural network-based automatic facial emotion recogintion system based on Fa- cial Action Coding System [ C ]//Communication ( COMM ), 2014 10th International Conference on. Bucharest : IEEE ,2014 : I - 6.

二级参考文献164

  • 1Hopfield J J. Neural networks and physical systems with emergent col|ective computational abilities [J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558.
  • 2Hinton G E, Sejnowski T J. Optimal perceptual inference [C]//Proc of the 1983 IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 1983: 448-453.
  • 3Hinton G E, Sejnowski T J. Analyzing cooperative computation [C] //Proc of the 5th Annual Congress of the Cognitive Science Society. New York: ACM, 1983: 2554- 2558.
  • 4Hofstadter D R. The copycat project: An experiment in nondeterminism and creative analogies [DB/OL:. MIT Artificial Intelligence Laboratory Memo 755. (1984- 01-01) [2004-10-01]. http://hdl, handle, net/1721.1/5648.
  • 5Hofstadter D R. A Non-Deterministic Approach to Analogy, Involving the Ising Model of Ferromagnetism[M] //The Physics of Cognitive Processes. Hackensack: World Scientific, 1987.
  • 6Smolensky P. Information Processing in Dynamical Systems: Foundations of Harmony Theory [M]//Parallel Distributed Processing, Vol 1: Foundations. Cambridge: MIT Press, 1986: 194-281.
  • 7Ackley D H, Hinton G E, Sejnowski T J. A learning algorithm for Boltzmann machines [J]. Cognitive Science, 1985, 9(1): 147-169.
  • 8Hinton G E. Training products otF experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14 (8) : 1771-1800.
  • 9Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220 (4598) : 671- 680.
  • 10Hinton G E. To recognize shapes, first learn to generate images [J]. Computational Neuroscience: Theoretical Insights into Brain Function, 2007, 165(1): 535-547.

共引文献386

同被引文献79

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部