期刊文献+

正渗透技术研究现状及进展 被引量:22

The current status and research advances in forward osmosis
原文传递
导出
摘要 作为一种新型膜处理技术,正渗透技术自20世纪50年代建立以来,在环保、能源、海水淡化等领域受到越来越广泛的关注;其经历了从实验室研究,中试实验,到少量的商业化应用,技术日臻完善.本文综合了国内外相关文献的信息,从正渗透膜制备、浓差极化、汲取液及正渗透应用等四方面对正渗透技术的研究现状及进展进行了综述,并分析了其应用过程中存在的缺陷和未来发展趋势.正渗透技术的研发虽取得了显著进展,但仍存在应用瓶颈.正渗透膜仍存在对某些污染物的截留率不高、支撑层内浓差极化大、造价较贵等问题;影响浓差极化的因素尽管已经比较清楚,但至今尚无有效大幅度降低甚至消除内浓差极化的方法;汲取液存在反向渗透较重、回收过程能耗较大等问题;正渗透技术的应用范围,特别是在工业废水处理领域还需拓展. As a novel membrane technology,forward osmosis( FO) is attracting increasing attention in the field of environmental protection,energy sources exploration,seawater desalination,etc. The study on FO has experienced laboratory scale experiments,pilot-scale studies and very a few of commercial applications,which facilitates the progress of FO technology. Based on the literatures,this review attempts to summarize the research progress in FO membrane fabrication,concentration polarization identification,draw solution selection and the application of FO. Besides,the existed problems in the application and the future development trend are also analyzed. In summary,there has been great progress in the study of FO,but there is still bottleneck for its application. The current available FO membranes still have some problems,such as low rejection to some pollutants,heavy concentration polarization in the support layer and high cost. Factors affecting the concentration polarization are clear,but so far,there lacks effective methods to reduce or even eliminate the internal concentration polarization. As for draw solution,it is need to develop methods to reduce the solute reverse osmosis and energy consumption for its recycling. In addition,applications of FO in the field of industrial wastewater treatment still need to be explored.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第9期3118-3126,共9页 Acta Scientiae Circumstantiae
基金 水体污染控制与治理科技重大专项(No.2014ZX07216) 中国博士后科学基金资助项目~~
关键词 正渗透膜 浓差极化 汲取液 正渗透应用 forward osmosis membrane concentration polarization draw solution forward osmosis applications
  • 相关文献

参考文献51

  • 1Achilli A, Cath T Y, Childress A E. 2010. Selection of inorganic-based draw solutions for forward osmosis applications [ J ]. Journal of Membrane Science, 364(1/2) : 233-24l.
  • 2Altaee A, Zaragoza G, Tonningen van H R. 2014. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination [ J ]. Desalination, 336 ( 3 ) :50-57.
  • 3Achilli A, Cath T Y, Marchand E A, et al. 2009. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes [ J]. Desalination, 239 (1/3) : 10-21.
  • 4Boo C, Khalil Y F, Elimelech M. 2015. Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis [ J ]. Journal of Membrane Science, 473 ( 1 ) : 302-309.
  • 5Cai Y F, Shen W M, Loo S L, et al. 2013. Towards temperature driven forward osmosis desalination using Semi-lPN hydrogels as reversible draw agents[ J~. Water Research, 47(11) : 3773-3781.
  • 6Cath T Y, Childress A E, Elimelech M. 2006. Forward osmosis: Principles, applications, and recent developments [ J ]. Journal of Membrane Science, 281(1/2) :70-87.
  • 7程世营,张捍民,杨凤林.垫片法对正渗透过程中浓差极化的改善研究[J].膜科学与技术,2015,35(1):49-55. 被引量:5
  • 8Chung T S, Luo L, Wan C F, et al. 2015. What is next for forward osmosis (FO) and pressure retarded osmosis (PRO) [ J]. Separation and Purification Technology, 156 (2) : 856-860.
  • 9Chung T S, Zhang S, Wang K Y, et al. 2012. Forward osmosis processes : Yesterday, today and tomorrow [ J 1. Desalination, 287 (2) :78-81.
  • 10Coday B D, Xu P, Beaudry E G, et al. 2014. The sweet spot of forward osmosis : Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams [ J J. Desalination, 333 ( 1 ) :23-35.

二级参考文献131

  • 1宋宏新,刘晓阳.四种干燥方法生产番茄粉的品质特性研究[J].食品科技,2006,31(8):101-104. 被引量:20
  • 2吕建国,王文正,高辉.卷式反渗透膜浓缩番茄汁的实验研究[J].食品工业科技,2006,27(9):127-129. 被引量:6
  • 3刘忠洲,张国俊,纪树兰.研究浓差极化和膜污染过程的方法与策略[J].膜科学与技术,2006,26(5):1-15. 被引量:28
  • 4Warczok J, Ferrando M, Lopez F, et al. Reconcentration of spent solutions from osmotic dehydration using direct osmosis in two configurations[J]. Journal of Food Engineering, 2007, 80 ( 1 ) :317-326.
  • 5Benko K, Pellegrino J, Mason L W, et al. Measurement of water permeation kinetics across reverse osmosis and nanofiltration membranes: Apparatus development[J]. Journal of Membrane Science, 2006, 270 (1-2) : 187-195.
  • 6McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. Journal of Membrane Science, 2008, 318 (1-2) : 458-466.
  • 7Wang K Y, Chung T, Qin J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process[J]. Journal of Membrane Science, 2007, 300 (1-2): 6-12.
  • 8Wang K Y, Yang Q, Chung T, et al. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall[J]. Chemical Engineering Science, 2009, 64 (7) : 1577-1584.
  • 9Verissimo, Peinemann K V, Bordado J. Thin-film composite hollow fiber membranes: An optimized manufacturing method[J]. Journal of Membrane Science, 2005, 264 (1-2): 48-55.
  • 10Gerstandt K, Peinemann K V, Skilhagen S E, et al. Membrane processes in energy supply for an osmotic power plant[J]. Desalination, 2008,224 (1-3) : 64-70.

共引文献62

同被引文献210

引证文献22

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部